Closing the Loop on an Artificial Pancreas

Life as a parent is never easy, but when you’ve got a kid with Type 1 diabetes it’s a little harder. Sometimes it feels like a full-time job in itself; there’s never a break. With carb counts and insulin ratios that change throughout the day, every meal is a medical procedure. A romp in the snow or a long bike ride can send her blood glucose plummeting. The overnights are the worst, though, because you never know if you overestimated the number of carbs at dinner and gave her too much insulin. Low blood glucose is easily treated with a few sips of juice, but if it goes unnoticed in the middle of the night, it could be fatal. That’s why parents of diabetics are always a little glassy eyed — we rarely sleep.

Why is all this necessary? It’s because Type 1 diabetes (T1D) is an autoimmune disease that attacks the insulin-producing beta cells in the pancreas. Once those cells are dead, insulin is no longer produced, and without insulin the rest of the cells in the body can’t take in the glucose that they need to live. Diabetics have to inject just the right amount of insulin at just the right time to coincide with the blood glucose spike that occurs after meals. Knowing how much to give and when is why we say we have to “learn to think like a pancreas.”

Animas Ping insulin pump, partial teardown. The cylinder on the bottom is the battery, the motor and syringe compartment are on top. Source: Animas

Things are better than they used to be, for sure. Insulin pumps have been a game changer for T1Ds. An insulin pump is just a tiny syringe pump. A small motor moves the plunger on a disposable syringe filled with a few days worth of insulin. The hormone is delivered through a small catheter placed under the skin every few days — painful, but better than a needle stick with every meal and snack.  A computer keeps track of everything and provides safety against overdosing on insulin, so it’s terribly convenient, but we still need to “think like a pancreas” and calculate the amount to deliver.

Even with its shortcomings, my daughter’s pump has been a blessing, and I’ll do whatever it takes to keep her in the latest gear. Pumps generally cost about $5000 or so, and need to be replaced every three years. While I’m not looking forward to paying the bill when her current pump gives up the ghost, I am certainly keen to do a teardown on the old one. I suspect it’s dead simple in there — a tiny gear motor, some kind of limit switches, and a main board. It’ll be painful to see how little my money buys, but it’ll be cool to play around with it.

Continue reading “Closing the Loop on an Artificial Pancreas”

Open Source Glucose Monitoring on the Front Lines of Innovation

Cloud-based CGM

[John] is the parent of a diabetic child, and his efforts to expand the communication options for his son’s CGM (continuous glucose monitor) have grown into a larger movement: #wearenotwaiting.

After receiving a new monitor—a Dexcom G4—[John] set about decoding its communication protocols. The first steps were relatively simple, using a laptop to snag the data from the CGM and storing it on a Google doc which he could access as the day went along. The next step involved connecting the monitor and a cellphone for around-the-clock data gathering. [John] managed to develop an Android app to accomplish just that, and shortly after people began to take notice. Both [Howard Look], the CEO of Tidepool, and [Lane Desborough], engineer and father of a child with diabetes, have thrown in their support, leading to further developments such as Nightscout, an open source solution for storing CGM data in the cloud.

This project is a victory not only for those with diabetes, but also for the open source community. [John] admits his initial hesitation for developing for the medical device platform: litigation from a corporation could cause devastation for him and his family despite his intentions to merely improve his son’s and others’ quality of life. Those fears have mostly subsided, however, because the project now belongs to both no one and to everyone. It’s community-owned through an open source repository. Check out the overview of [John’s] work for more pictures and links to different parts of the #wearenotwaiting community.

Blood glucose monitor data pushed to smart watch


[Don] uses a Continuous Glucose Monitor to stay on top of his diabetes. It means carrying around an expensive and fragile device which acts as the readout. He’s an active guy and doesn’t want to destroy the thing while dirt biking or kick boxing so he’s been trying to use a TI Chronos smart watch as a display alternative.

As you can see he has already made some headway. This image shows the watch displaying data from the device. Unfortunately he’s depending on a PC to interface with the CGM display, then pushing it to the watch. He may try moving to a Raspberry Pi to help make this more mobile. This way the sensitive hardware could be tucked safely in a case inside a backpack while the watch shows his current glucose levels. We’d also love to see an embedded solution that would emulate the communications the PC is using to harvest the data. If you’ve got any suggestions in this area we’re sure that [Don] would appreciate the help.