Hackaday Links: June 29, 2014

hackaday-links-chain

Ever see a really cool build on YouTube with no build details at all? Frustrating, right? That’s us with the NES Keytar covering the Game of Thrones theme. He’s using a Raspi with the sound chip in the NES to do live chiptunes. Freakin’ awesome. There’s also the ST:TNG theme as well.

A few years ago the folks at Oculus had an idea – because of cellphones, small, high resolution displays are really cheap, so why not make VR goggles? At Google IO this week someone figured out everyone already has a cellphone, so just wrap it in some cardboard and call it a set of VR goggles. You can get a kit here, but the only difficult to source components are the lenses.

What happens when you put liquid nitrogen under a vacuum? Well, it should evaporate more, get colder, and freeze. Then it breaks up into solid nitrogen snow. No idea what you would do with this, but there ‘ya go. Oh, [NC], we’re going to need a writeup of that LN2 generator.

About a month ago, the House4Hack hackerspace in South Africa told us of their plans to bring a glider down from 20km above the Earth. They finally launched it, The CAA only allowed them to glide back from 6km (20,000 feet), but even from there the foam glider hit 230kph (124 knots). That’s a little impressive for a foam FPV platform, and we’re betting something with a larger wingspan would probably break a spar or something. Shout out to HABEX.

All the electronic dice projects we’ve seen have one thing in common: they’re not cubes. Thus uberdice. It’s six nine-pixel displays on the faces of a cube, powered by a battery, and controlled by an accelerometer. Yes, it is by far the most complicated die ever made, but it does look cool.

Hackaday Links: March 25, 2013

Illegal, yet impressive

cans

Want a soda? Just grab a robot, shove it in a vending machine, and grab yourself one. This video is incredibly French, but it looks like we’ve got a custom-built robot made out of old printers and other miscellaneous motors and gears here. It’s actually pretty impressive when you consider 16 ounce cans weigh a pound.

UNOBTANIUM

chip

Okay, we got a lot of emails on our tip line for this one. It’s a group buy for a programmable oscillator over on Tindie. Why is this cool? Well, this chip (an SI570) is used in a lot of software defined radio designs. Also, it’s incredibly hard to come by if you’re not ordering thousands of these at a time. Here’s a datasheet, now show us some builds with this oscillator.

Chiptune/keygen music anywhere

keygen

[Huan] has a co-loco’d Raspi and wanted a media server that is available anywhere, on any device. What he came up with is a service that streams chiptune music from your favorite keygens. You can access it with Chrome (no, we’re not linking directly to a Raspberry Pi), and it’s extremely efficient – his RAM usage didn’t increase a bit.

Take it on an airplane. Or mail it.

bomb

[Alex]‘s hackerspace just had a series of lightning talks, where people with 45-minute long presentations try to condense their talk into 10 minutes. Of course the hackerspace needed some way to keep everything on schedule. A simple countdown timer was too boring, so they went with a fake, Hollywood-style bomb. No, it doesn’t explode, but it still looks really, really fake. That’s a good thing.

Printers have speakers now?

nokia

[ddrboxman] thought his reprap needed a nice ‘print finished’ notification. After adding a piezo to his electronics board, he whipped up a firmware hack that plays those old Nokia ringtones. The ringtones play over Gcode, so it’s possible to have audible warnings and notifications. Now if it could only play Snake.

Creating a MIDI synth from a Commodore SID

The Commodore SID was the audio chip in the venerable Commodore 64 and in the 30 years since release has attained classic status and become one of the best ways to get your chiptune on. Designed by famous synthesizer designer [Bob Yannes], it was only a matter of time before we saw a real, homebrew MIDI synth based on the Commodore SID.

Because real SID chips are rare as hen’s teeth nowadays, [Jeff Ledger] built his SID synth around an emulated system running on a Pocket Mini Computer. This very cool microcontroller platform runs on the Parallax Propeller. An emulated SID runs in one of the Propeller’s 8 cores, with the remaining cores kept open for reading MIDI notes and displaying info on a display.

The hardware portion of this build is amazingly simple; just an optoisolater, a few resistors, and a diode connect a MIDI keyboard to the Pocket Mini Computer. The buttons and dials on [Jeff]‘s MIDI keyboard control the waveforms, filters, and envelope controls. A very neat setup if we do say so ourselves, and just perfect if you’re needing more chiptunes in your life.

You can check out [Jeff]‘s video after the break.

[Read more...]

Propeller turned into chiptune player with a software SID

If there wasn’t reason enough to love the Parallax Propeller, now you can listen to chiptunes with your own pocket SID audio player.

This chiptune audio player uses the very unusual and very cool eight-core Parallax Propeller microcontroller. After soldering a few caps and resistors to a Propeller dev board to allow for audio out, the only thing necessary to play SID music files is a bit of code and an SD card breakout.

The key piece of code for this build would be the SIDcog object written by [Johannes Ahlebrand] this piece of code turns one of the eight cores in the Propeller into a virtual version of the classic Commodore 64 sound chip.

Since the SIDcog object only takes up one core on the eight core Propeller, it could be possible to turn this SID player into an all-inclusive chiptune audio source; the addition of an Atari POKEY or FM synthesis cog would allow for just about any conceivable chiptune sound to be carried around in a pocket.

No Hackaday post about chiptunes or SIDs would be complete without an audio demo, so you can check out the Propeller-powered SID after the break.

[Read more...]

Making chiptunes with 32 bytes of RAM

Ah, chiptunes. One of the few remaining human endeavours where less RAM, less storage space, and fewer capabilities are actually considered an improvement. [dop3joe] over at the Stuttgart hackerspace Shackspace sent in a tiny chiptune playing circuit using the most bare-bones hardware we’ve ever seen.

The Noiseplug, as [dop3joe] calls it, is based on a very, very small 6 pin ATtiny9. With 1 kB of Flash memory and only 32 bytes of RAM [dop3joe] was able to create a small device inside an RCA jack that plays chiptunes whenever it is powered by a battery.

If you’d like to make your own noise plug, [dop3j0e] put all the code up in his Git. There are two relevant pieces of software for this build: a Windows app to create the chiptunes, and the ATtiny9 firmware itself. Of course to program the tiny, you’ll have to deal with the Atmel TPI, so here’s the application note (PDF).

Oh, [dop3joe] won third place at the Evoke demoscene party last weekend with the Noiseplug. Awesome.

Chiptune player uses preprocessed .MOD files

[Kayvon] just finished building this chiptune player based on a PIC microcontroller. The hardware really couldn’t be any simpler. He chose to use a PIC18F2685 just because it’s big enough to store the music files directly and it let him get away with not using an external EEPROM for that purpose. The output pins feed a Digital to Analog Convert (DAC) chip, which in turn outputs analog audio to an LM386 OpAmp. The white trimpot sandwiched between the chips controls the volume.

The real work on this project went into coding a program which translates .MOD files into something the PIC will be able to play. Because of the memory limits of the chip it is unable to directly use all of the instrument samples from these files. [Kayvon] wrote a program with a nice GUI that lets him load in his music and page through each instrument to fine-tune how they are being re-encoded. The audio track from the video after the break doesn’t do the project justice, but you will get a nice look at the hardware and software.

[Read more...]

Putting an Atari POKEY in your pocket

The Atari POKEY served as the main I/O chip on the venerable Atari 400/800 and XL/XE 8-bit computers. While a chip designed to get voltages from game paddles and scanning a matrix of keyboard switches wouldn’t normally be remembered 30 years later, the POKEY had another function: generating very, very distinctive music and sound effects for those old Atari games. [Markus Gritsch] wanted a portable version of the POKEY, so he emulated one on a modern microcontroller. Now he’s able to take those old Atari chiptunes where ever he goes.

The build uses the Another Slight Atari Player by emulating a 6502 and POKEY chip inside [Markus]‘ PIC32MX-based microcontroller. There’s not much physical hardware [Markus] had to deal with – the board is built on a QFP proto board [Markus] picked up with a few buttons and a jack added for some simple I/O.

This isn’t [Markus]‘s first attempt at portabalizing chiptunes – last year, we saw a truly awesome portable SID player that used the same PIC32 microcontroller and an emulated 6502. Between the Atari SAP Music Archive and the High Voltage SID Collection, [Markus] has more than enough chiptunes for days of listening pleasure.

Follow

Get every new post delivered to your Inbox.

Join 93,893 other followers