Hacklet 120 – Coffee Hacks

Hackers need fuel to hack. In general that fuel comes in the form of food, water, and caffeine. Not necessarily in that order. While soda or energy drinks will do in a pinch, the best hackers know that the purest form of caffeine comes from coffee. This of course means that there have been decades of coffee hacks. The first Internet-connected coffee pot dates all way back to 1991, before the web even had pictures. We’ve come a long way since then. This week on the Hacklet we’re checking out some of the best coffee hacks on Hackaday.io!

coffee1We start with [opeRaptor] and CoffeeOfThings. [OpeRaptor] has created a wireless, internet connected coffee carafe. The carafe has three CdS cells which enable it to detect how much black gold is left in the pot. A TMP36 sensor reports the current coffee temperature. Data is sent out via a NRF24l01 radio. The brains of the coffee pot is an MSP430 microcontroller. All this runs from a simple CR2032 coin cell. A base station receives the coffee data, displays it on a very nice Vacuum fluorescent Display (VFD). An ESP8266 then passes the data on to the internet.

 

coffewarmerNext up is [magnustron] with quad-386 coffee heater. No one likes a cold cup of coffee. Everyone loves old CPUs. [Magnustron] turned these two shower thoughts into a the world’s first USB powered quad CPU coffee warmer with data logging capabilities. A simple ATtiny461 micro runs the show. PC connectivity is via USB using the V-USB library. [Magnustron] has gotten the CPUs to warm up, but is having some issues with switching. them on. Turning all four heaters on too quickly causes the rail to droop, leading to dropped USB connections. Those power-hungry 386 chips may be a bit too much for a single USB connection. It might be time to add an external power supply.

groundsNext is [kesh1030] with Using Waste Coffee As A Biodiesel Source. Coffee isn’t just liquid energy. There’s oil in them there grounds. Millions of pounds of used coffee grounds produced every year can be converted to biodiesel fuel. [Kesh1030] experimented with different coffee grounds, and different ways to prepare them. The oil was extracted from the coffee using hexane, which is a bit of a nasty solvent. [Kesh1030] used a fume hood to stay safe. He found that homogenized coffee grounds had an 11.87% oil yield. Used homogenized coffee grounds weren’t far behind, with 9.82% yield of oil. Nearly 10% per weight yield isn’t too shabby, considering this is all going into the trash.

dripperFinally, we have [saadcaffeine] with Caffeinator: gravity powered geek fuel dripper. This is a project of few words, but the images tell much of the story. [Saadcaffeine] created his own cold drip iced coffee maker using upcycled and found components. Three clothes hangers form an ingenious tripod. The tripod holds two soda bottles – the water reservoir and the brew pot. Water is restricted by small holes in the soda bottle caps. This allows it to drop slowly though the machine, giving it time to soak up all the caffeinated goodness. The result is a fresh cup of cold drip. Just add ice and enjoy a quick power up!

If you want to see more coffee hacks, check out our new coffee projects list. See a project I might have missed? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Brasilia Espresso Machine PID Upgrade Brews Prefect Cup of Energy

Coffee, making and hacking addictions are just bound to get out of control. So did [Rhys Goodwin’s] coffee maker hack. What started as a little restoration project of a second-hand coffee machine resulted in a complete upgrade to state of the art coffee brewing technology.

coffee_hack_arduinoThe Brasilia Lady comes with a 300 ml brass boiler, a pump and four buttons for power, coffee, hot water and steam. A 3-way AC solenoid valve, wired directly to the buttons, selects one of the three functions, while a temperamental bimetal switch keeps the boiler roughly between almost there and way too hot.

To reduce the temperature swing, [Rhys] decided to add a PID control loop, and on the way, an OLED display, too. He designed a little shield for the Arduino Nano, that interfaces with the present hardware through solid state relays. Two thermocouples measure the temperature of the boiler and group head while a thermal cut-off fuse protects the machine from overheating in case of a malfunction.

Also, the Lady’s makeup received a complete overhaul, starting with a fresh powder coating. A sealed enclosure along with a polished top panel for the OLED display were machined from aluminum. [Rhys] also added an external water tank that is connected to the machine through shiny, custom lathed tube fittings. Before the water enters the boiler, it passes through a custom preheater, to avoid cold water from entering the boiler directly. Not only does the result look fantastic, it also offers a lot more control over the temperature and the amount of water extracted, resulting in a perfect brew every time. Enjoy [Rhys’s] video where he explains his build:

Continue reading “Brasilia Espresso Machine PID Upgrade Brews Prefect Cup of Energy”

Hackaday Prize Entry: Wirelessly Charged Self-Heating Coffee Mug

Many productive hackers bleed a dark ochre. The prevailing theory among a certain group of commenters is that they’re full of it, but it’s actually a healthy sign of a low blood content in the healthy hacker’s coffee stream. [Bharath] is among those who enjoy the caffeinated bean juice on a daily basis. However, he’d suffer from a terrible condition known as cold coffee. To combat this, he built an app-enabled, wirelessly chargeable, self-heating coffee mug.

We know that most hackers don’t start off planning to build objects with ridiculous feature lists, it just happens. Is there an alternate Murphy’s law for this? Any feature that can be added will? The project started off as some low ohm resistors attached to a rechargeable power bank. A insulated flask with a removable inner stainless steel lining was chosen. The resistors were fixed to the outside with a thermal epoxy.

However, how do we control the resistors? We don’t want to burn through our battery right away (which could end up more literally than one would like), so [Bharath] added a Linkit One microcontroller from Seeed Studio. With all this power at his disposal, it was natural to add Bluetooth, a temperature sensor, and app control to the cup.

After getting it all together, he realized that while the insides were perfectly isolated from the liquids held in the flask under normal use, the hole he’d have to cut to connect to the charging circuit would provide an unacceptable ingress point for water. To combat this he added the wireless charging functionality.

With his flask in hand, we’re sure the mood boost from not having to slog through the dregs of a cold container of coffee will produce a measureable improvement in productivity. Video after the break.

Continue reading “Hackaday Prize Entry: Wirelessly Charged Self-Heating Coffee Mug”

Meet Blue Jay, The Flying Drone Pet Butler

20 students of the Eindhoven University of Technology (TU/e) in the Netherlands share one vision of the future: the fully domesticated drone pet – a flying friend that helps you whenever you need it and in general, is very, very cute. Their drone “Blue Jay” is packed with sensors, has a strong claw for grabbing and carrying cargo, navigates autonomously indoors, and interacts with humans at eye level.

Continue reading “Meet Blue Jay, The Flying Drone Pet Butler”

MRRF: Tasty Filament from Proto-Pasta

Alongside printers from all walks of manufacturing, one can naturally expect to find people selling different kinds of filament at a 3D printing festival. One of these purveyors of plastic was Proto-pasta out of Vancouver, WA. Proto-pasta prides themselves on unique offerings and complete transparency about their manufacturing processes.

Almost all of their filaments are either PLA or HTPLA with something special added during extrusion. The menu includes steel, iron, carbon, and finely ground coffee. The coffee filament was one of our favorites for sure. The print they brought with them looked solidified light roast and had a transparent kind of lollipop quality to it. I couldn’t detect the coffee scent due to allergies, but [Alex] assured me that printing with this filament will make your house or hackerspace smell terrific.

[Alex] was giving away samples of their stainless steel composite PLA. This one can be polished to a smooth shine with a series of papers that run from 400 to 8,000-grit. Another of their newer offerings is PLA infused with magnetic iron particles. Prints made with this stuff can be rusted to achieve an antique, steampunk, or shabby chic aesthetic.

Proto-pasta also has an electrically conductive composite carbon PLA. This one is great for capacitive applications like making a custom, ergonomic stylus or your own game controller. According to the site, the resistivity of printed parts is 30 ohms per centimeter as measured perpendicular to the layers, and 115 ohms along the layers.

Have you made anything awesome with conductive or magnetic filament? Have you had any problems with unorthodox filaments? Let us know in the comments.

Alarm Notifies the Office When the Coffee is Ready

[Stian] thought it would be nice if his coworkers could be electronically notified when the latest batch of coffee is ready. He ended up building an inexpensive coffee alarm system to do exactly that. When the coffee is done, the brewer can press a giant button to notify the rest of the office that it’s time for a cuppa joe.

[Stian’s] first project requirement was to activate the system using a big physical button. He chose a button from Sparkfun, although he ended up modifying it to better suit his needs. The original button came with a single LED built-in. This wasn’t enough for [Stian], so he added two more LEDs. All three LEDs are driven by a ULN2003A NPN transistor array. Now he can flash them in sequence to make a simple animation.

This momentary push button supplies power to a ESP8266 microcontroller using a soft latch power switch. When the momentary switch is pressed, it supplies power to the latch. The latch then powers up the main circuit and continues supplying power even when the push button is released. The reason for this power trickery is to conserve power from the 18650 li-on battery.

The core functionality of the alarm uses a combination of physical hardware and two cloud-based services. The ESP8266 was chosen because it includes a built-in WiFi chip and it only costs five dollars. The microcontroller is configured to connect to the WiFi network with the push of a button. The device also monitors the giant alarm button.

When the button is pressed, it sends an HTTP request to a custom clojure app running on a cloud service called Heroku. The clojure app then stores brewing information in a database and sends a notification to the Slack cloud service. Slack is a sort of project management app that allows multiple users to work on projects and communicate easier over the internet. [Stian] has tapped into it in order to send the actual text notification to his coworkers to let them know that the coffee is ready. Be sure to watch the demo video below. Continue reading “Alarm Notifies the Office When the Coffee is Ready”

DIY Coffee Roaster uses Cordless Drills and a Camp Stove

We’re no stranger to coffee roasting hacks, but it’s been a while since we’ve seen a new DIY roaster design. Thankfully [Larry] has been hacking together a small-batch roaster with a bunch of off-the-shelf parts. He was originally trying to make a fully-automated roasting system, but after a bunch of failed prototypes, he settled on a simple roaster design that works great.

[Larry]’s roaster is designed for small batches of coffee (about 3oz). He has a small hopper with a motorized auger (cannibalized from a chocolate fountain) which drops coffee down into his roasting basket. The basket is mounted to a cordless screwdriver which rotates it to agitate the beans inside. A small camp stove provides the heat, which is placed right under the basket. The beans churn around in the roasting basket and heat up until they reach the desired roast level (typically between first and second crack).

Once the roasting is complete, another hand drill rotates the basket assembly to dump out the coffee. [Larry]’s build includes an assortment of knobs and switches which control the auger, basket speed, bean dumping, and even a “speedometer” gauge that shows how fast the basket is rotating. Want to build your own roaster? Check out the instructions for building [Larry]’s roaster or some other builds we’ve featured before.