Researching cosmic rays with cloud chambers

In the late 1940s, the US Naval Research Laboratory used a few German-built V2 rockets to study cosmic rays from above Earth’s atmosphere. To do this, a nitrogen-powered cloud chamber was fitted inside the nose cone of these former missiles, sent aloft, and photographed every 25 seconds during flight. When [Markus] read about these experiments, he thought it would be an excellent way to study cosmic rays from a high altitude balloon and set about building his own Wilson cloud chamber.

Cloud chambers work by supersaturating the atmosphere with water or alcohol vapor. This creates a smoky cloud inside the chamber, allowing for the visualization of radiation inside the cloud. Usually the clouds in these chambers are made in a very cold environment using dry ice, but rapidly decreasing the air pressure in the chamber will work just as well, as [Markus] discovered.

[Markus]‘s small cloud chamber uses a CO2 cartridge to provide the pressure in the cloud chamber before dumping the CO2 out of the chamber with the help of a solenoid valve.

In the video after the break, [Markus] demonstrates his cloud chamber by illuminating the cloud with a laser pointer and introducing a few alpha particles with a sample of Americium 241. It looks very cool, and seems to be useful enough to count cosmic rays aboard a balloon or amateur rocket.

[Read more...]

Detecting cosmic rays with 18 Geiger tubes

What do you do if you have 18 Geiger tubes lying around? [Robert] had an interesting idea to build a cosmic ray detector and hodoscope to observe the path cosmic rays take while flying through his lab.

[Robert]‘s cosmic ray detector works by detecting the output 9 Geiger tubes on the y-axis and 9 Geiger tubes on the x-axis with a coincidence circuit. When a cosmic ray flies through the detector, it should trigger two tubes simultaneously. By graphing which of the two tubes were triggered on an array of 81 LEDs, [Robert] not only knows when a cosmic ray is detected, but where the cosmic ray was.

The detectors do pick up a little background radiation, but thanks to [Robert]‘s coincidence circuit, he can be fairly certain that what he’s recording are actually high-energy cosmic rays.

Before building the 9×9 hodoscope, [Robert] built a similar drift hodoscope that simply plots the path a cosmic ray takes through an array of Geiger tubes. You can check out videos of both these cosmic ray detectors after the break.

[Read more...]