Animatronic Cosplay Wings

In recent years, Cosplay as a hobby has seen improvement in the props department by leaps and bounds. Thanks in part due to the rise of the Maker culture and the easy availability of design and manufacturing tools and processes. Case in point is this awesome set of Animatronic Wings that programmer [Nelson Stoldt] built for his daughter who wanted to be Nightmare Moon.

[Nelson] had no idea what he’d gotten himself in to when he answered “Sure, I can do that”. Making motorized cosplay wings that open up to 8 feet wide and close again at the flick of a switch without weighing a ton is not a trivial project. The final rig did end up tipping the scales at just over 9 kgs, but we guess that’s a load that Cosplayers are used to hauling around.

Using a nifty program called Linkage, he played around with a few different design approaches until he found a mechanism that worked well. If you ever want to build one of [Theo Jansen]’s Strandbeest, give this program a spin. Armed with this information, and a spreadsheet to help determine the exact length of each linkage element, he modelled the project in Sketchup. The wings are operated by a scissor mechanism that is driven by a motorized screw operated sliding carriage. Wing position is measured by a potentiometer coupled to one of the wing elements. Basically, he just built a huge, powerful servo.

Continue reading “Animatronic Cosplay Wings”

Monstrous Suit of Power Armor 3D Printed over 140 Days

fallout-armour-3d-printed-no-helmet[hirocreations] printed an entire suit of enormous Fallout power armor on his Monoprice Maker Select 3D printer, which took some 140 days and over 120 pounds of IC3D PLA filament. Happily, [hirocreations] was able to arrange a sponsorship with IC3D for the build – who would be crazy enough to use so much filament over so long for an entire 7+ foot tall suit, right? Over those 140 days, the belts on the printer needed to be replaced twice but it otherwise chugged right along.

Most of the parts were printed at 0.46 mm layer height. Individual parts were welded (melted) together using what is essentially a soldering iron with a flat tip; many parts were too thin for any kind of joints or fixtures to be practical. Parts were smoothed with drywall spackle, lots of filler primer, and painted. Some of the parts – like the chest armor – are mounted on a frame made from PVC tubing. [hirocreations] may have gone through 120 pounds of filament, but the end result doesn’t weigh that much; the suit itself weighs in at 85-90 lbs, the rest of it went to support material, skirts, and print failures.

It was known from the start that weight could become a serious issue, so [hirocreations] went for a very light infill (10%) and 3-4 perimeter layers; he also extruded at a high temperature (~230C) which he said seemed to provide a very strong layer bond with the settings and filament he was using. So far, he says it’s taken some very hard knocks and nothing has broken or cracked. He has a short video series documenting the assembly, and you can see some of the raw armor parts before any finishing in one of the videos, embedded below.

Continue reading “Monstrous Suit of Power Armor 3D Printed over 140 Days”

Development Tools of the Prop-Making World

We’ve seen them before. The pixel-perfect Portal 2 replica, the Iron Man Arc Reactor, the Jedi Lightsaber. With the rise of shared knowledge via the internet, we can finally take a peek into a world hidden behind garage doors, basements, and commandeered coffee tables strewn with nuts, bolts, and other scraps. That world is prop-making. As fab equipment like 3D printers and laser cutters start to spill into the hands of more people, fellow DIY enthusiasts have developed effective workflows and corresponding software tools to lighten their loads. I figured I’d take a brief look at a few software tools that can open the possibilities for folks at home to don the respirator and goggles and start churning out props.

Continue reading “Development Tools of the Prop-Making World”

Raspberry Pi Halloween Voice Changer

[Dave Shevett] has spent a lot of time (more than a year) expanding his Technomancer costume along with the companion (Arduino-driven) magic staff. He found, however, he needed a way to get his voice out from behind the mask. If you are going to go through that much trouble, you might as well augment your voice at the same time, right?

[Dave’s] voice changer uses a Raspberry Pi which isn’t all that complicated. The Pi uses Linux, and Unix–the predecessor to Linux–has a long history of having little tools you can string together to do big jobs. So once you have a Pi and a sound card, the rest is just some Linux command line wizardry.

There’s a battery and a small portable amplifier to get that booming voice. Since you don’t want to lug a keyboard and monitor around to handle every reboot, [Dave] set the Pi up to run his voice-changing scripts on each reboot.

This is a great example of why old Unix programmers make small tools and use the shell to join them together. [Dave’s] voice changer is pretty much just some off the shelf parts and a  script so simple it hardly qualifies as programming in any real sense. In fact, it is essentially one line of “code”:

play "|rec --buffer 2048 -d pitch -300 echos 0.8 0.88 100 0.6 150 .5 band 1.2k 1.5k"

Sure, there is some street cred in embedded development to doing everything the hard way, but with the advent of cheap embedded Linux systems, why not take advantage of the tools where you can?

If you want a more roll-your-own approach, you can pick up your Arduino or break out an audio mixer (but good luck getting it in your costume).

Walk Like A Xenomorph

[James Bruton] is busy working on his latest project, a “scrap metal sculpture”-inspired Alien Xenomorph suit.  However, he wanted to get a boost in height as well as a digitigrade stance. To that end, [James] 3D-printed a pair of customized stilts. Each stilt consisted of a lifter with several parts laminated together using acetone. He bolted an old pair of shoes onto the stilts, adding straps across the toes to keep the shoes from lifting up.

While the stilts worked very well, [James] wanted to add soles to them to give him some traction as he walked – falling while in a Xenomorph costume composed of sharp plastic sounds painful enough! He decided to hybrid print the soles using ABS and Ninjaflex. The ABS part of the sole was then acetone-welded to the bottom of the stilts.

[James] hopes to add some claws for effect, so long as they don’t impede his walking too much. He has already completed a good amount of the 3D-printed suit. We know the finished project is going to be amazing: [James] has created everything from Daleks to Iron Man!

Continue reading “Walk Like A Xenomorph”

Cosplaying as HAL 9000

2001: A Space Odyssey is one of the greatest films of all time, but unlike every other masterpiece of SciFi, you’re not going find many people cosplaying as characters from the movie. Going as a monolith to a con would be hilarious, but [jacqueslelezard] had an even better idea in mind: a HAL 9000 costume.

The costume itself is just bits of painted cardboard, shiny material (we’d go with aluminum tape), some black mosquito netting to see out of, and in a stroke of brilliance, a tablet that will display HAL’s unblinking eye to con attendees. If you’re extraordinarily clever, it might be possible to sample lines from the movie and play them through the tablet. This is, unfortunately, the best way to replicate the voice of HAL, at least until someone gets the money to have [Douglas Rain] sit in for some voice work.

The only drawback to the costume is the propensity for the wearer to hit their head on doorways and low thresholds. This problem could be solved simply by increasing the size of the costume, but then you’re back in monolith territory. So, what do you want to be, a murderous computer or a galactic swiss army knife?

High voltage Thor’s Hammer: Mjolnir at 80,000 volts

[Thor’s] hammer, Mjolnir, is pretty freaking awesome. It can only be picked up by [Thor], he can use it to fly, and probably the coolest part, it can summon lightning. After watching the first movie, and goofing around with the guys at ArcAttack, I had this idea that I could stuff a tiny tesla coil into a mjolnir and end up with a really cool prop.

At this point, I had to make a decision. I was either going to go portable and live with small arcs, or make this a stationary piece and hide a giant tesla coil in a base. It would have bigger arcs, but I couldn’t carry it around.  While I may re-visit the stationary version at some point, I ultimately decided I wanted to be able to wander around and play with this thing.

I had seen some videos of [Staci Elaan] showing off her battery-powered coils and I really liked her results. I figured, with her experience, she could probably do a better job than I could on getting the most bang out of a small package.  She was happy to be involved and delivered a small 12v powered coil for me to work with. I should also point out that the coils [Staci] makes are usually donated to educational groups. This woman is awesome.

Continue reading “High voltage Thor’s Hammer: Mjolnir at 80,000 volts”