Let’s Play Spot The Fake MOSFET

Recently, the voice push to talk circuit in [Ryan]’s BITX40 radio was keyed down for a very long time. Blue smoke was released, a MOSFET was burnt out, and [Ryan] needed a new IRF510 N-channel MOSFET. Not a problem; this is a $1 in quantity one, but shipping from Mouser or Digikey will always kill you if you only buy one part at a time. Instead, [Ryan] found a supplier for five of these MOSFETs for $6 shipped. This was a good deal and a bad move because those new parts were fakes. Now we have an opportunity to play spot the fake MOSFET and learn that it’s all about the supply chain.

Spot the fake

To be fair to the counterfeit MOSFET [Ryan] acquired, it probably would have worked just fine if he were using his radio for SSB voice. [Ryan] is using this radio for digital, and that means the duty cycle for this MOSFET was 100% for two minutes straight. The fake got hot, and the magic blue smoke was released.

Through an industry contact, [Ryan] got a new, genuine IRF510 direct from Vishay Semiconductors. This is a fantastic opportunity to do a side-by-side comparison of real and counterfeit semiconductors, shown at right. Take a look: the MOSFET on the left has clear lettering, the one on the right has tinned leads and a notched heatsink. [Ryan] posed the question to a few Facebook groups, and there was a clear consensus: out of 37 votes, 21 people chose the MOSFET on the left to be genuine.

The majority of people were wrong. The real chip looked ugly, had tinned leads, and a thinner heatsink. The real chip looked like a poor imitation of the counterfeit chip.

What’s the takeaway here?  Even ‘experts’ — i.e. people who think they know what they’re talking about on the Internet — sometimes don’t have a clue when it comes to counterfeit components. How can you keep yourself from being burned by counterfeit components? Stick to reputable resellers (Mouser, Digikey, etc) and assume that too good to be true is too good to be true.

Counterfeit Hardware May Lead To Malware and Failure

Counterfeit parts are becoming increasingly hard to tell the difference from the real deal, the technology used by the counterfeiters has come on leaps and bounds, so even the experts struggle to tell the real product from a good fake. Mere fake branding isn’t the biggest problem with a counterfeit though, as ieee.com reports, counterfeit parts could contain malware or be downright dangerous.

Way back in 2014 the FBI charged [Marc Heera] with selling clones of the Hondata S300, a plugin engine module for Honda cars that reads sensors, and depending on their values can change idle speed, air-fuel mixture and a plethora of other car/engine related settings. What, might you ask, is the problem, except they are obviously not genuine parts? According to Honda they had a number of issues such as random limits on engine rpm and occasionally failure to start. While the fake Hondata S300 parts where just poor clones that looked the part, anything connected to an engine control unit brings up huge safety concerns and researchers have shown that through ECU access, they could hijack a car’s steering and brakes.

It’s not just car parts being cloned, remember the fake USB-to-serial chips of FTDI-Gate? Entire routers are also being cloned, which doesn’t sound too bad until you realise that the cloners could configure your internet traffic to be redirected through their network for snooping. In 2010 Saudi citizen [Ehab Ashoor] was convicted of buying cloned Cisco Systems gigabit interface converters with the intention of selling them to the U.S Dept of Defense. While nothing sinister was afoot in [Ashoor]’s case other than greed, these routers were to be deployed in Iraq for use by the Marine Corps networks. They were then to be used for security, transmitting troop movements and relaying intelligence from field operations back to HQ.

So who are the cloners and why are they doing it? It is speculated that some of them may be state funded, as there are a lot of countries who do not trust American silicon. Circuits are reverse engineered and find their way to the international market. Then just like the FTDI-Gate case, cloners want to make profits from others intellectual property. This also brings up another question, if there is a mistrust of American silicon, nearly everything is made in China these days so why should we trust anything from there? Even analog circuits can be made to spy on you, as you can see from the piece we recently featured on compromising a processor using an analog charge pump. If you want to defend yourself from such attacks, perhaps look at previous Hackaday Prize finalist, ChipWhisperer.

Nordic NRF24L01+ – Real vs Fake

[zeptobars], the folks behind all the decapping hard work and amazing die shots are at it again. This time they decided to look under the hood of two identical looking Nordic nRF24L01+ chips.

The nRF24L01+ is a highly integrated, ultra low power (ULP) 2Mbps RF transceiver IC for the 2.4GHz ISM (Industrial, Scientific and Medical) band. Popular, widely used and inexpensive – and the counterfeit foundries are drawn to it like honey bees to nectar. But to replicate and make it cheaper than the original, one needs to cut several corners. In this case, the fakes use 350nm technology, compared to 250nm in the original and have a larger die size too.

These differences mean the fakes likely have higher power usage and lower sensitivities, even though they are functionally identical. The foundry could have marked these devices as Si24R1, which is compatible with the nRF24L01 and no one would have been wiser. But the lure of higher profits was obviously too tempting. A look through Hackaday archives will dig up several posts about the work done by [zeptobars] in identifying fake semiconductors.

Retrotechtacular: The Sylvania Tube Crusher

This week, we’re switching off the ‘Tube and taking a field trip to Emporium, Pennsylvania, home of the Sylvania vacuum tube manufacturing plant. Now, a lot of companies will tell you that they test every single one of their products, ensuring that only the best product makes it into the hands of John Q. Public. We suspect that few of them actually do this, especially these days. After all, the more reliable the product, the longer it will be before they can sell you a new one.

sylvania-tube-crusher-thumbFor Sylvania, one of the largest tube manufacturers of the golden age, this meant producing a lot of duds. A mountain of them, in fact, as you can see in the picture above. This article from the January 1957 issue of Popular Electronics vilifies forgers who used all kinds of methods to obtain defective tubes. They would then re-brand them and pass them off as new, which was damaging to Sylvania’s good name and reputation.

In addition to offering a reward for turning in known tube forgers, Sylvania did the most reasonable thing they could think of to quash the gray market, which was building a tube-crushing machine. Pulverizing the substandard tubes made sure that there were no “factory seconds” available to those fraudsters. After crushing shovelful after shovelful of tubes, the glass splinters were removed through a flotation separation process, and the heavy metals were recovered.

Did we get you all hot about tubes? Here’s how Mullard made their EF80 model.

[Thanks for the tip, Fran!]

Retrotechtacular is a weekly column featuring hacks, technology, and kitsch from ages of yore. Help keep it fresh by sending in your ideas for future installments.

More Counterfeit Apple Chargers Than You Can Shake An iPod At

Phones, MP3 players, designer bags, artwork, money…. anything with value will bring out the counterfeiters looking to make a quick buck. Sometimes the product being counterfeited isn’t even necessarily expensive. For example, an Apple iPad Charger. [Ken Shirriff] got a hold of a counterfeit iPad Charger, took it apart, and did some testing.

So why would someone buy a counterfeit product? To save some money! The counterfeits are usually cheaper to reel the potential buyer in thinking they are getting a deal. In this case, the Apple product costs $19 and the knock-off is $3, that’s a huge difference.

Continue reading “More Counterfeit Apple Chargers Than You Can Shake An iPod At”

Fake Audiophile Opamps Revealed

chip

The OPA627 is an old, popular, and very high-end opamp found in gear cherished by the most discerning audiophiles. This chip usually sells for at least $15, but when [Zeptobars] found a few of these expensive chips on ebay going for $2, his curiosity was piqued. Something just isn’t right here.

[Zeptobars] is well known for his decapsulating and high-resolution photography skills, so he cut the can off a real OPA627, and dissolved one of the improbably cheap ebay chips to reveal the die. Under the microscope, he found an amazing piece of engineering in the real chip – laser trimmed resistors, and even a nice bit of die art.

The ebay chip, if it were real, would look the same. It did not. The ebay chip only contained one laser trimmed resistor and looks to be a much simpler circuit. After a bit of research, [Zeptobars] found it was actually an AD774 opamp. The difference is small, but the AD774 still has much higher noise – something audiophiles could easily differentiate with their $300 oxygen-free volume knobs.

This isn’t the first instance of component counterfeiting [Zeptobars] has come across. He’s found fake FTDI chips before, and we’re counting the days until he gets around to putting a few obviously fake ebay 6581 SID chips under the microscope.

Raspberry Pi foundation looks at counterfeit Apple power supplies

The Raspberry Pi foundation is in a somewhat unique position. They always test the units that get returned to them in hopes that they can improve the design. They often request that the power supply also be sent back with the RPi unit, as we know the board will not work well if the PSU can’t source enough current. And so they’ve been able to get a look at several counterfeit iPhone chargers. This is not one of the recommended ways to power the RPi, but their ability to collect failed hardware means that they have identified three different fakes on the market.

Seen here is a genuine Apple product on the left. The others are fake, with the easiest way of spotting them being the shiny chrome plug connectors. The genuine part has a matte finish on the connectors. There is also a difference in the chamfering, and even a variation on the orientation of the USB port on some of them. Unfortunately we don’t get a look inside, which is what we really wanted. But you can see in the video after the break that weighing the adapter will also give it away as a fake, showing that the components within probably vary quite a bit. This reminds us of some other fake PSUs that have been exposed.

Continue reading “Raspberry Pi foundation looks at counterfeit Apple power supplies”