RasPiCommPlus, An Expansion Board For Expansion Boards

The easiest way to connect a GSM module to a Raspberry Pi would be to buy a breakout module, install some software, and connect to a mobile network with a Pi. Need GPS, too? That’s a whole other module, with different software. The guys behind RasPiCommPlus are working on a better solution – a breakout board for breakout boards that takes care of plugging a ton of modules into a Pi and sorts out the kernel drivers to make interfacing with these modules easy.

Right now, the team has a GPS and GSM module, digital in and out modules, an analog input module, and RS-232 and -485 modules. They’re working on some cool additions to the lineup, including a breakout for Sharp memory displays, a 9-axis IMU, a stepper motor driver, and a 1-wire breakout module.

Some of the RasPiCommPlus team showed up to the Hackaday Munich party and were kind enough to sit down for a demo video. You can check that out below.

Continue reading “RasPiCommPlus, An Expansion Board For Expansion Boards”

CircuitHub Launches Group Buy Crowdsourcing Campaigns

Kickstarter isn’t the solution to every manufacturing hurdle, you know? Crowdsourcing—everybody’s favorite cliché to invoke after sharing their less-than-half-baked merchandise idea—has expanded to include yet another variation, and is currently rocking [Max Thrun's] BeagleBone GamingCape thanks to [Jason Kridner]. If the cape looks familiar, it’s because we featured it earlier this summer, when [Max] created it as part of TI’s Intern Design Challenge.

Here’s how it works. Rather than asking strangers to place pre-orders (let’s admit it, that’s ultimately how Kickstarter functions), CircuitHub campaigns work as a group-buy: upload your KiCad, Eagle or Altium design and a BOM, and you’re on your way to bulk-order savings. As [Kridner] explains in his blog post, you’ll have some finagling to do for your campaign to be successful, such as choosing between prices at different volumes, projecting how many people need to buy in as a group, etc. When he sourced the parts on his own, [Kridner] spent nearly $1000 for a single GamingCape. The CircuitHub campaign, if successful, would land everyone a board for under $100 each—and it’s assembled. 

Who needs Kickstarter; that’s hard to beat.

Tesla Truck Wants to Bring The Makerspace To The Children

With so many budget cuts, many public schools find themselves having to cut “unnecessary” programs such as shop, art, and music classes. They simply can’t afford to keep those things running and also teach other important concepts like math, language, and history. The obvious side effect is that kids don’t have a safe place to be creative and learn to make things with their hands.

Luckily, the maker movement has been rapidly growing over the last few years with makerspaces popping up all over the globe. These places are picking up the slack left behind by the budget cuts that hurt our public schools. But while makerspaces are getting more and more common, they still don’t exist everywhere. Even in those places lucky enough to have a makerspace, not everyone is aware that they exist and not everyone can afford to be a full-time member. This is where Tesla Truck comes in.

The Tesla Truck’s mission statement is “to provide a cutting-edge, mobile, hands-on STEM lab, where students, teachers, and makers can teach, learn, collaborate, create, and innovate.” It’s a noble cause for sure, but how do they plan to do this? This group intends to outfit a truck with the kinds of tools every maker dreams of. These would include a 3D printer, laser cutter, CNC plasma cutter, mill and lathe, electronics bench, and more.

Obviously just having a bunch of high-end tools is not going to cut it. Someone is going to have to teach people how to properly use these tools. The group behind the Tesla Truck is made up of educators, engineers, and published researches who have been doing this kind of thing for a while now. This group has been packing up their own personal tools into their hatchbacks and setting up shop in school classrooms around New York City, only to have to break down at the end of the day and bring them all home again. Together with the students, this group has built things like robots, quadcopters, and water purifiers. The Tesla Truck will give them the ability to reach more people much more easily.

The Tesla Truck is looking to raise a total of $62,804.01 to make their dream a reality. They have raised more than half of that outside of crowd funding. They’ve now turned to Indiegogo to raise the last $24,300. They have ten days left and they are almost halfway to their goal. You can watch their campaign video below to get a better feel for what they are all about. Continue reading “Tesla Truck Wants to Bring The Makerspace To The Children”

Ask Hackaday: Why Don’t We Have Flexible Displays Yet?

A few times a month we receive extremely well crafted crowdfunding campaigns in our tip line that make us doubt our sense of reality. While this article therefore isn’t a hack, we felt it would be a good place to start a discussion around OLED flexible displays.

As the dedicated Wikipedia article states flexible displays have been around for a few years already. In 2013, the Samsung Galaxy Round was unveiled as the world’s first mobile phone with a 5.7″ flexible display. The phone (and the screen) were curved in shape but the phone itself was solid. The same goes for the recent Samsung Gear S smart watch.

Yet for only $350 in a $50k goal crowdfunding campaign the Portal flexible wearable smartphone seems to have all the answers. It is scratch & shatter proof, water-resistant, flexible, includes a ‘Portal proprietary flexible battery’, the ‘Fastest multi-core CPU’, gyro, compass, barometer, Bluetooth 4.0, NFC, GPS…. Specifications are even subject to change to ensure the best available components… and it is 89% funded. As they mention,

building a smartphone or a tech company isn’t rocket science.

We also found a 70% funded €100k crowdfunding campaign for a watch bracelet (right click to translate) that will include GPS, Bluetooth, NFS (not a typo), a uSD card, a 4 lines LED screen and a battery for a few days autonomy… how surprising that no major manufacturer thought of that.

This leads us to the title of this post: why don’t we have truly flexible displays yet? We’ll let our readers discussion this point in the comments section below…

Developed on Hackaday: Crowd- funding Campaign Start!

For a little less than a year open source enthusiasts from all over the globe got together to work on an open source offline password keeper. We narrated our progress here on Hackaday and always asked our readers’ opinion when critical decisions were to be made.

Today, the wait is finally over: the Mooltipass crowdfunding campaign finally arrived.

In some of our Developed on Hackaday series posts we noticed that it was tricky for us to convey the benefits of the device we were developing. The first 3 minutes of our video therefore explain good security practices and how the Mooltipass can help users with their credentials security. For our readers that may not have followed our adventure since its beginning, the campaign’s text will provide them with a simple (yet detailed) explanation of what the Mooltipass can do. Finally, our geeky readers will find at the end of our write-up a few links supporting our claims. We would have liked offering cheaper pledges but we unfortunately need to hire professional javascript developers to finish our app & extension.

Our Mooltipass Developed on Hackaday series therefore come to an end. We would like to thank you for your support and hope that you enjoyed seeing an idea materialize into a crowdfunding-ready product!

Developed on Hackaday: The Answer is Below

In one month the Mooltipass offline password keeper project will be one year old.

We hope that our twice a month Developed on Hackaday series posts allowed our dear readers to see what are the steps involved in a device’s life, going from idea to prototype to crowdfunding-ready product. The Mooltipass is the fruit of a unique world-wide collaboration around open source, developed by and for security minded people who (for most of them) never saw each other. Relating our progress here enabled us to benefit from our readers’ feedback and make sure that we didn’t miss important wanted features. Contrary to other campaigns that we often debunk on Hackaday, we preferred to wait until we had a beta-tester approved device to move to the crowdfunding stage. Our geekiest readers will therefore find the launch date embedded in this post, other may want to subscribe to our official Google group to stay updated.

The Hoverboard You Can Build At Home

Press embargoes lifted today, heralding the announcement of the world’s first hoverboard. Yes, the hovering skateboard from Back to the Future. It’s called the Hendo hoverboard, it’s apparently real, and you can buy one for $10,000. If that’s too rich for your blood, you can spend $900 for a ‘technology demonstrator’ – a remote-controlled hovering box powered by the same technology.

Of course the world’s first hoverboard is announced to the world as a crowd funding campaign, so before we get to how this thing is supposed to work, we’ll have to do our due diligence. The company behind this campaign, Arx Pax Labs, Inc, exists, as does the founder. All the relevant business registration, biographical information, and experience of the founder and employees of Arx Pax check out to my satisfaction. In fact, at least one employee has work experience with the innards of electric motors. At first glance, the company itself is actually legit.

The campaign is for a BttF-style hoverboard, but this is really only a marketing strategy for Arx Pax; the hoverboards themselves are admittedly loss leaders even at $10,000 – the main goal of this Kickstarter is simply to get media attention to the magnetic levitation technology found in the hoverboard. All of this was carefully orchestrated, with a ‘huge event’ to be held exactly one year from today demonstrating a real, working hoverboard. What’s so special about demoing a hoverboard on October 21, 2015?

next year

I defy anyone to come up with a better marketing campaign than this.

The meat of the story comes from what has until now been a scientific curiosity. Everyone reading this has no doubt seen superconductors levitated off a bed of magnets, and demonstrations of eddy currents are really just something cool you can do with a rare earth magnet and a copper pipe. What [Greg Henderson] and Arx Pax have done is take these phenomena and turned them into a platform for magnetic levitation.

According to the patent, the magnetic levitation system found in the Hendo hoverboard works like this:

  • One or more electric motors spin a series of rotors consisting of an arrangement of strong permanent magnets.
  • The magnets are arranged in a Halbach array that enhances the magnetic field on one side of the array, and cancels it on the other.
  • By placing the rotors over a conductive, non-ferrous surface – a sheet of copper or aluminum, for example – eddy currents are induced in the conductive surface.
  • These eddy currents create a magnetic field that opposes the magnetic field that created it, causing the entire device to levitate.

hoverboard

That’s it. That’s how you create a real, working hoverboard. Arx Pax has also developed a method to control a vehicle equipped with a few of these hover disks; the $900 ‘Whitebox’ technology demonstrator includes a smart phone app as a remote control.

If you’re still sitting in a steaming pile of incredulity concerning this invention, you’re in good company. It’s a fine line between being blinded by brilliance and baffled by bullshit, so we’re leaving this one up to you: build one of these devices, put it up on hackaday.io, and we’ll make it worth your while. We’re giving away some gift cards to the Hackaday store for the first person to build one of these hoverboards, preferably with a cool body kit. The Star Wars landspeeder has already been done, but the snowspeeder hasn’t. Surprise us.