Off-World Cement Tested For The First Time

If the current Administration of the United States has their way, humans will return to the surface of the Moon far sooner than many had expected. But even if NASA can’t meet the aggressive timeline they’ve been given by the White House, it seems inevitable that there will be fresh boot prints on the lunar surface within the coming decades. Between commercial operators and international competition, we’re seeing the dawn of a New Space Race, with the ultimate goal being the long-term habitation of our nearest celestial neighbor.

Schmitt's dusty suit while retrieving samples from the Moon
An Apollo astronaut covered in lunar dust

But even with modern technology, it won’t be easy, and it certainly won’t be cheap. While commercial companies such as SpaceX have significantly reduced the cost of delivering payloads to the Moon, we’ll still need every advantage to ensure the economical viability of a lunar outpost. One approach is in situ resource utilization, where instead of transporting everything from Earth, locally sourced materials are used wherever possible. This technique would not only be useful on the Moon, but many believe it will be absolutely necessary if we’re to have any chance of sending a human mission to Mars.

One of the most interesting applications of this concept is the creation of a building material from the lunar regolith. Roughly analogous to soil here on Earth, regolith is a powdery substance made up of grains of rock and micrometeoroid fragments, and contains silicon, calcium, and iron. Mixed with water, or in some proposals sulfur, it’s believed the resulting concrete-like material could be used in much the same way it is here on Earth. Building dwellings in-place with this “lunarcrete” would be faster, cheaper, and easier than building a comparable structure on Earth and transporting it to the lunar surface.

Now, thanks to recent research performed aboard the International Space Station, we have a much better idea of what to expect when those first batches of locally-sourced concrete are mixed up on the Moon or Mars. Of course, like most things related to spaceflight, the reality has proved to be a bit more complex than expected.

Continue reading “Off-World Cement Tested For The First Time”

New Shape-Shifting Polymer Works Hard, Plays Hard

A research group at the University of Rochester has developed a new polymer with some amazing traits. It can be stretched or manipulated into new shapes, and it will hold that shape until heat is applied. Shape-shifting polymers like this already exist, but this one is special: it can go back to its original shape when triggered by the heat of a human body. Oh, and it can also lift objects up to 1000 times its mass.

The group’s leader, chemical engineering professor [Mitch Anthamatten], is excited by the possibilities of this creation. When the material is stretched, strain is induced which deforms the chains and triggers crystallization. This crystallization is what makes it retain the new shape. Once heat is applied, the crystals are broken and the polymer returns to its original shape. These properties imply several biomedical applications like sutures and artificial skin. It could also be used for tailored-fit clothing or wearable technology.

The shape-shifting process creates elastic energy in the polymer, which means that it can do work while it springs back to normal. Careful application of molecular linkers made it possible for the group to dial in the so-called melting point at which the crystallization begins to break down. [Anthamatten] explains the special attributes of the material in one of the videos after the break. Another video shows examples of some of the work-related applications for the polymer—a stretched out strand can pull a toy truck up an incline or crush a dried seed pod.

Continue reading “New Shape-Shifting Polymer Works Hard, Plays Hard”