Developed on Hackaday: License Incompatibilities and Project State

mooltipass top pcb

It has been a while since we wrote an article about our ongoing offline password keeper project, aka the Mooltipass. Our last post was asking our dear readers to vote for their favorite card art, so what have we been doing since then?

For the last few weeks we’ve mostly been improving our current PCBs and case design for the production process to go smoothly. The final top PCB shown above has been tweaked to improve his capacitive touch sensing capabilities, you may even see a video of the system in action in the Mooltipass project log on We’ve also spent some time refining the two most popular card art designs so our manufacturers may print them correctly. We’ll soon integrate our updated USB code (allowing the Mooltipass to be detected as a composite HID keyboard / HID generic) into the main solution which will then allow us to work on the browser plugin.

It’s also interesting to note that we recently decided to stop using the GPL-licensed avrcryptolib. Our current project is CDDL licensed, allowing interested parties to use our code in their own project without forcing them to publish all the remaining code they created. The GPL license enforces the opposite, we therefore picked another AES encryption/decryption implementation. This migration was performed and checked by our dedicated contributor [Miguel] who therefore ran the AES NESSIE / CTR tests and checked their output, in less than a day.

We’re about to ship the first Mooltipass prototypes to our active contributors and advisers. A few weeks later we’ll send an official call for beta testers, just after we shown (here on Hackaday) what the final product looks like. Don’t hesitate to ask any question you may have in the comments section, you can also contact us on the dedicated Mooltipass Google group.

Developed on Hackaday: Vote for your Favorite Card Art

A few weeks ago we asked our dear readers if they were interested in coming up with some card art for the Mooltipass project. We received more than a dozen of them and a few days ago the HaD project Mooltipass followers/Mooltipas Google group recipients voted for their favorite ones.

Today we’ll present you the three popular ones and ask you to pick your favorite, so please follow us after the break…

[Read more...]

Developed on Hackaday: Olivier’s Design Rundown

The Hackaday writers and readers are currently working hand-in-hand on an offline password keeper, the Mooltipass. A few days ago we presented Olivier’s design front PCB without even showing the rest of his creation (which was quite rude of us…). We also asked our readers for input on how we should design the front panel. In this new article we will therefore show you how the different pieces fit together in this very first (non-final) prototype… follow us after the break!

[Read more...]

Developed on Hackaday: 2 Days Left to Submit your Design!

We’re sure that many of Hackaday readers already know that one of the two main components of the Mooltipass project is a smart card, containing (among others) the AES-256 encryption key. Two weeks ago we asked if you’d be interested coming up with a design that will be printed on the final card. As usual, many people were eager to contribute and recently sent us a few suggestions. If you missed the call and would like to join in, it’s not too late! You may still send your CMYK vector image at mathieu[at]hackaday[dot]com by sunday. More detailed specifications may be found here.

In a few days we’ll also publish on Hackaday a project update, as we recently received the top and bottom PCBs for Olivier’s design. The low level libraries will soon be finished and hopefully a few days later we’ll be able to ship a few devices to developers and beta testers. We’re also still looking for contributors that may be interested in helping us to develop browser plugins.

The Mooltipass team would also like to thank our dear readers that gave us a skull on Hackaday projects!

Developed on Hackaday: Need Card Art — Who Likes to Draw?

Our offline password keeper project (aka Mooltipass) is quite lucky to have very active (and very competent) contributors. [Harlequin-tech] recently finished our OLED screen low level graphics library which (among others) supports RLE decompression, variable-width fonts and multiple bit depths for fonts & bitmaps. To make things easy, he also published a nice python script to automatically generate c header files from bitmap pictures and another one to export fonts.

[Miguel] finished the AES encryption/decryption schemes (using AES in CTR mode) and wrote an awesome readme which explains how everything works and how someone may check his code using several standardized tests. We highly encourage readers to make sure that we didn’t make any mistake, as it was one of you that suggested we migrate to CTR mode (thanks [mate]!).

On the hardware side, we launched into production the top & bottom PCBs for Olivier’s design. We’re also currently looking for someone that has many Arduino shields to make sure that they can be connected to the Mooltipass. A few days ago we successfully put the Arduino bootloader inside our microcontroller and made the official Arduino Ethernet shield work with it.

Finally, as you may have guessed from the picture above our dear smart card re-sellers can pretty much print anything on them (these are samples). If one of you is motivated to draw something, please contact me at mathieu[at]!

On a (way) more childish note, don’t hesitate to give a skull to the mooltipass on HaD projects so it may reclaim its rightful spot as “most skulled“.

Authentic Blue Blueprints


At one point in history, blueprints were actually blue. Now, if you even see a dead tree version of plans or assemblages, they’re probably printed off with a plotter or large format printer. You can, however, make your own blueprints at home, as [Tyler] shows us in his Hackaday Project.

Back in the olden days, master drawings were traced onto large sheets of transparent film. These master prints were then laid over paper prepared with Potassium Ferricyanide and Ferric Ammonium Citrate to create an insoluble Prussian Blue background for the prints. Developing is easy – just expose the transparent positive and undeveloped paper to UV light, in the form of fluorescent bulbs or the sun.

[Tyler] began his blueprint creation process by getting a few design sketches of the RSI Aurora and Nautilus, editing them on a computer, and printing them out on transparency sheets. A solution of equal parts Potassium Ferricyanide and Ferric Ammonium Citrate were painted onto a piece of paper and allowed to dry. Exposing was a simple matter of laying the transparency over the undeveloped paper and setting it out in the sun for 20 minutes or so. After that, it’s a simple matter of washing off the unexposed chemicals and letting the newly created blueprint dry.

It’s a simple technique, but also very, very cool. Not exactly practical, given a plotter can spit out an architectural or assembly drawing of any building, vehicle, or device in a few minutes, but just the ticket for art pieces or extremely odd engineers.

Thanks [Sarah] for sending this in.

Status Light Tells You The Code is Borked Again

status light

[Arthur] is teaching himself product development. Rather than create a few mock-up products, he’s taking the path of designing real devices he can use. His current device is a status light for automated software tests.  We’ve seen test and GitHub status lights before, however this is the first one to integrate with an outside web service. The status light’s state is based upon output from CodeShip, an online continuous deployment test engine.

The electronic design is simple. An Electric Imp retrieves test status data from CodeShip. The Imp then sends the status data over two GPIO lines to an AdaFruit Trinket. The Trinket controls a NeoPixel ring. A green ring indicates all tests are passing. Purple means tests are in progress. A spinning red ring (of death) means one or more tests have failed. Power is supplied via a mini USB connector.

[Arthur] spent quite a bit of time on the mechanical design of the status light as well. All the parts are 3D printed. This allowed him to quickly go through several revisions of each part. We like the use of white PLA for a frosted effect on the top section of the light, as it diffuses the eye piercing glow from all those RGB LEDs. As a finishing touch, [Arthur] created a fake product page for his light. He doesn’t have any plans to sell it, but we hope he drops the source and STL files so we can create one of our own.

[Read more...]