Hackaday Prize Entry: A Go-Kart For a Special Child

ScottCar is a go-kart for a special Kid and is [Alain]’s entry in this years Hackaday Prize. Will it race to victory?

The concept behind ScottCar is simple: There isn’t much out there for disabled kids when it comes to go-karts. [Alain Mauer] has an autistic son who isn’t quite capable of driving a Go-Kart as he would have trouble using pedals and brakes. He didn’t let that stand in his way, so he built a go-kart for his 11-year-old son. It incorporates an automatic braking system. In situations where the kart speeds up going down, brakes are automatically applied, slowing it down to a normal pace. It also features a remote emergency brake which would avoid crashes while supervising playtime. The braking system uses bike disc brakes controlled by an Arduino Nano. A Siemens Motor with a screw drive is what propels the vehicle, powered by a 12V Battery with a healthy 7.5Ah capacity.

The project is being released under GNU General Public License version 3, Will we be seeing ScottCar racing towards the Hackaday prize?

Music Player for the Ability-Impaired

Most of the hacks we come across here at Hackaday don’t require much more than being “cool” to get our attention. But, every so often we find something that goes a step beyond that and does something truly good for the world. This is one such project, and its goal couldn’t be anymore altruistic: to allow the elderly to enjoy music, even when their declining vision and motor skills make traditional devices difficult to use.

It’s hard to overstate how important music is to people; there are few forms of art more emotionally effective. So, it was a major loss when an elderly relative of [DusteD] was no longer able to operate their CD player. Luckily, [DusteD] was there with an ingenious solution that uses RFID cards to play music from an always-on Raspberry Pi.

Continue reading “Music Player for the Ability-Impaired”

Pips Help Everyone Around the House

Sometimes you start a project with every intention of using it in a specific way, or maybe your plan is to have a very well-defined set of features. Often, though, our projects go in a completely different direction than we might have intended. That seems to be the case with [Dave] and his Pips. These tiny devices were originally intended to be used by people with disabilities, but it turns out that they’re a perfect platform for this “Internet of Things” thing that we’ve been hearing so much about.

Built around the Bright Blue Bean microcontroller platform to take advantage of its low energy requirements, the Pips were originally intended to be placed around the house where they would light up to remind the user to perform some task. Once the button was pushed, the next Pip in the sequence would activate. While they are quite useful for people with cognitive or sensory impairments, they can also be used in a similar way to the Amazon Dash button or any other simple internet-enabled device. Especially when used in conjunction with a home automation setup, this device could be used in novel ways, such as automating your morning routine without having to add a weight sensor to your bed.

We are also pleased to see that all of the project files are available on GitHub for anyone looking to try this out. Its interesting when something that was originally intended to help out anyone with a disability finds a use somewhere else that it might not have originally been intended for. After all, though, the principle of using things in novel ways is kind of the entire basis of this community.

Head Gesture Tracking Helps Limited Mobility Students

There is a lot of helpful technology for people with mobility issues. Even something that can help people do something most of us wouldn’t think twice about, like turn on a lamp or control a computer, can make a world of difference to someone who can’t move around as easily. Luckily, [Matt] has been working on using webcams and depth cameras to allow someone to do just that.

[Matt] found that using webcams instead of depth cameras (like the Kinect) tends to be less obtrusive but are limited in their ability to distinguish individual users and, of course, don’t have the same 3D capability. With either technology, though, the software implementation is similar. The camera can detect head motion and control software accordingly by emulating keystrokes. The depth cameras are a little more user-friendly, though, and allow users to move in whichever way feels comfortable for them.

This isn’t the first time something like a Kinect has been used to track motion, but for [Matt] and his work at Beaumont College it has been an important area of ongoing research. It’s especially helpful since the campus has many things on network switches (like lamps) so this software can be used to help people interact much more easily with the physical world. This project could be very useful to anyone curious about tracking motion, even if they’re not using it for mobility reasonsContinue reading “Head Gesture Tracking Helps Limited Mobility Students”

Say Watt? A Talking Multimeter?


After a request from one of his friends, [Mastro Gippo] managed to put together a talking multimeter to be used by blind persons working in electronics. He wanted a feature-rich meter that had serial output, and recalling this Hackaday article from a few years back led him to find a DT-4000ZC on eBay, which has serial output on a 3.5mm jack. (Though, he actually recommends this knockoff version which comes with excellent documentation).

It turns out there aren’t many talking meter options available other than this expensive one and a couple of discontinued alternatives. [Mastro Gippo] needed to start from scratch with the voice synthesizer, which proved to be as easy as recording a bunch of numbers and packing them onto an SD card to be read by an Arduino running the SimpleSDAudio library.

He found a small, battery-powered external speaker used for rocking out with music on cell phones and hooked it up to the build, stuffing all the electronics into an aluminum case. Stick around after the jump for a quick video of the finished product!

Continue reading “Say Watt? A Talking Multimeter?”

Hacking Digital Scales for the Disabled


[Jan] works with both physically and mentally disabled individuals, some of whom cannot read, making many of their tasks more difficult. Although [Jan] is not in a position to teach reading or writing skills, he was able to build an add-on device for the scales used in repackaging sweets to provide simple feedback that the user can interpret.

The device has three LEDs—red, green, and yellow—to indicate the package does not weigh enough (red), weighs too much (yellow), or lies within an acceptable range (green). The industrial scales at [Jan’s] workplace each have a serial output to connect to a printer, which he used to send data to the device. An ATMega8 controls the lights and an attached LCD, with the usual trimpot to change the display’s contrast and a rotary encoder to adjust the device’s settings. Everything fits snugly into a custom-made frosted acrylic enclosure, laser-cut at a local hackerspace.

[Jan] provides a rigorous guide to approaching each step on his Instructables page, along with source code and several pictures. See a video overview below, then enjoy another scale hack: building one from scratch.

Continue reading “Hacking Digital Scales for the Disabled”

3D printed Kindle page turner


The slim page turn buttons on a Kindle may serve as an elegant, out-of-the-way design for a generation raised with and saturated by technology. For older folks and the disabled, however, those buttons can be a pain. [XenonJohn] fired up his 3D printer to find a solution, building this Kindle page turner. The Kindle slides in from the top while two flappy paddles offer a larger, unmissable target to replace the usual thin page-turn buttons. [XenonJohn] designed the levers to function with only a light touch, and included “bump stops” underneath the levers to absorb excess force from any harsh, accidental smacks.

Construction is simple and straightforward: print pieces, clean pieces, put pieces together. The levers attach via 3D printed hinges, which [XenonJohn] glued to keep in place. The relevant 3D files are available at the link above, and stick around after the break for a quick video of the paddles flipping some pages. [XenonJohn] is no stranger to Hackaday; take a look at his Google Glass alternative, “Beady-i.” Also check out the Frankenkindle, one of the inspirations for [XenonJohn’s] project which required a much more invasive process for getting at the page turning buttons.

Continue reading “3D printed Kindle page turner”