Submersible Robots Hunt Lice With Lasers

De-lousing is a trying agricultural process. It becomes a major problem in pens which contain the hundreds of thousands of salmon farmed by Norwegians — the world’s largest salmon exporter — an environment which allows the parasite to flourish. To tackle the problem, the Stingray, developed by [Stingray Marine Solutions],  is an autonomous drone capable of destroying the lice with a laser in the order of tens of thousands per day.

Introduced in Norway back in 2014 — and some areas in Scotland in 2016 — the Stingray floats in the salmon pen, alert and waiting. If the lice-recognition software (never thought you’d hear that term, huh?) detects a parasite for more than two frames in the video feed, it immediately annihilates it with a 530 nanometre-wide, 100 millisecond laser pulse from up to two metres away. Don’t worry — the salmon’s scales are reflective enough to leave it unharmed, while the pest is fried to a crisp.  In action, it’s reminiscent of a point-defense laser on a spaceship.

Continue reading “Submersible Robots Hunt Lice With Lasers”

Propeller Backpack for Lazy Skiers

At first glance, it looks eerily similar to Inspector Gadget’s Propeller Cap, except it’s a backpack. [Samm Sheperd] built a Propeller Backpack (video, embedded after the break) which started off as a fun project but almost ended up setting him on fire.

Finding himself snowed in during a spell of cold weather, he found enough spare RC and ‘copter parts to put his crazy idea in action. He built a wooden frame, fixed the big Rimfire 50CC outrunner motor and prop to it, slapped on a battery pack and ESC, and zip-tied it all on to the carcass of an old backpack.

Remote control in hand, and donning a pair of Ski’s, he did a few successful trial runs. It looks pretty exciting watching him zip by in the snowy wilderness. Well, winter passed by, and he soon found himself in sunny California. The Ski’s gave way to a bike, and a local airfield served as a test track. He even manages to put in some exciting runs on the beach. But the 10S 4000 mAH batteries seem to be a tad underpowered to his liking, and the motor could do with a larger propeller. He managed to source a 12S 10,000 mAH battery pack, but that promptly blew out his Aerostar ESC during the very first static trial.

He then decided to rebuild it from ground up. A ten week welding course that he took to gain some college credits proved quite handy. He built a new TiG welded Aluminium frame which was stronger and more lightweight than the earlier wooden one. He even thoughtfully added a propeller safety guard after some of his followers got worried, although it doesn’t look very effective to us. A bigger propeller was added and the old burnt out ESC was replaced with a new one. It was time for another static trial before heading out in to the wide open snow again. And that’s when things immediately went south. [Samm] was completely unaware as the new ESC gloriously burst in to flames (8:00 into the third video), and it took a while for him to realize why his video recording friend was screaming at him. Check out the three part video series after the break to follow the story of this hack. For a bonus, check out the 90 year old gent who stops by for a chat on planes and flying (8:25 in the third video).

But [Samm] isn’t letting this setback pin him down. He’s promised to take this to a logical finish and build a reliable, functional Propeller Backpack some time soon. This isn’t his first rodeo building oddball hacks. Check out his experiment on Flying Planes With Squirrel Cages.

We seem to be catching a wave of wind-powered transportation hacks these days. Hackaday’s own [James Hobson] spent time in December on a similar, arguably safer, concept. He attached ducted fans to the back of a snowboard. We like this choice since flailing limbs won’t get caught in these types of fans.

Continue reading “Propeller Backpack for Lazy Skiers”

Hackaday Prize Entry: Electric Variable Pitch Props

Barring the smallest manned airplanes, most aircraft that are pulled around by a prop have variable pitch propellers. The reason for this is simple efficiency. Internal combustion engines are most efficient at a specific RPM, and instead of giving the engine more gas to speed up, pilots can simply change the pitch of a propeller. With a gas powered engine, the mechanics and design of variable pitch propellers are well understood and haven’t really changed much in decades. Adding variable pitch props to something pulled around by an electric motor is another matter entirely. That’s what [Peter McCloud] is building for his entry to the Hackaday Prize, and it’s going into the coolest project imaginable.

This project is designed for a previous Hackaday Prize entry, and the only 2014 Hackaday Prize entry that hasn’t killed anyone yet. Goliath is a quadcopter powered by a lawnmower engine, and while it will hover in [Peter]’s test rig, he’s not getting the lift he expected and the control system needs work. There are two possible solutions to the problem of controlling the decapatron: an ingenious application of gimballed grid fins, or variable pitch rotors. [Peter] doesn’t know if either solution will work, so he’s working on both solutions in parallel.

[Peter]’s variable pitch rotor system is basically an electronic prop mount that connects directly to the driven shafts on his gas-powered quadcopter. To get power to the electronics, [Peter] is mounting permanent magnets to the quad’s frame, pulling power from coils in the rotor hub, and rectifying it to DC to drive the servos and electronics. Control of the props will be done wirelessly through an ESP32 microcontroller.

Variable pitch props are the standard for everything from puddle jumpers to acrobatic RC helis. In the quadcopter world, variable pitch props are at best a footnote. The MIT ACL lab has done something like this, but perhaps the best comparison to what [Peter] is doing is the incredible Stingray 500 quad. Flite Test did a great overview of this quad (YouTube), and it’s extremely similar to a future version of the Goliath. A big motor (in the Stingray’s case, a brushless motor) powers all the props via a belt, and the pitch of the props is controlled by four servos. The maneuverability of these variable pitch quads is unbelievable, but since the Goliath is so big and has so much mass, it’s doubtful [Peter] will be doing flips and rolls with his quads.

You can check out a video of [Peter]’s build below.

Continue reading “Hackaday Prize Entry: Electric Variable Pitch Props”

Flexible Quadcopter Is Nearly Indestructible

We’ve all crashed quadcopters. It’s almost inevitable. Everything is going along fine and dandy ’till mother nature opens her big mouth a blows a nasty gust of wind right at you, pushing your quad into the side of a wall. A wall that happens to be composed of a material that is quite a bit harder than your quadcopter. “What if…” you ask yourself while picking up the pieces of you shiny new quad off the ground… “they made these things out of flexible material?”

Well, it would appear someone has done just that. The crash resistant quadcopter is composed of a flexible frame (obviously) which is held rigid with magnets. So the frame works just like the frame of your average quad. Until you crash it, of course. Then it becomes flexible.

The idea came from the wing of a wasp, which you can apparently crumple without damaging it. Be sure to check out the video below of the drone showing off its flexible frame, and let us know if you’ve seen any other types of flexible frame drones in the wild.

Thanks to [JDHE] for the tip!

Continue reading “Flexible Quadcopter Is Nearly Indestructible”

Welcome to the Drone Wars

DroneClash” is a competition to be held on December 4th (save the date!) in a hangar at Valkenburg airfield in the Netherlands. The game? Teams try to destroy each others’ quadcopters, navigate through a “Hallway of Doom, Death, and Destruction”, and finally enter a final phase of the game where they try to defend their “queen” drone while taking out those of their opponents.

This sounds like crazy and reckless fun. Surprisingly, it’s being sponsored by the Technical University of Delft’s Micro Air Vehicle (MAV) lab. The goal is to enable a future of responsible drone use by having the ability “to take them out if necessary”.

Drone development has grown hugely in recent years, and you can see the anti-drone industry growing too. Ideally, these developments keep each other in check and result in a safe and responsible incorporation of drones in our daily lives. We are organising DroneClash to generate new ideas in order to encourage this process.

We do have to ask ourselves why anyone would want to use another quadcopter to take out illegally operated quadcopters — there must be a million more effective means from a policing standpoint.  On the other hand, if we were re-shooting “Hackers” right now, and looking for a futuristic sport, we would swap out rollerblading for drone combat. Registration opens this week. Gentlebots, start your engines.

Continue reading “Welcome to the Drone Wars”

Autonomous Delivery and the Last 100 Feet

You’ve no doubt by now seen Boston Dynamics latest “we’re living in the future” robotic creation, dubbed Handle. [Mike Szczys] recently covered the more-or-less-official company unveiling of Handle, the hybrid bipedal-wheeled robot that can handle smooth or rugged terrain and can even jump when it has to, all while remaining balanced and apparently handling up to 100 pounds of cargo with its arms. It’s absolutely sci-fi.

[Mike] closed his post with a quip about seeing “Handle wheeling down the street placing smile-adorned boxes on each stoop.” I’ve recently written about autonomous delivery, covering both autonomous freight as the ‘killer app’ for self-driving vehicles and the security issues posed by autonomous delivery. Now I want to look at where anthropoid robots might fit in the supply chain, and how likely it’ll be to see something like Handle taking over the last hundred feet from delivery truck to your door.

Continue reading “Autonomous Delivery and the Last 100 Feet”

I’m BatBot

How would you like a bat bot for your next pet drone? Researchers from the University of Illinois at Urbana-Champaign’s Coordinated Science Laboratory and from the California Institute of Technology, created a bat drone. This is not your regular drone; it’s not a styrofoam, bat-shaped, four-propeller kind of drone. It’s a drone that mimics not only the shape but the movement of the bats wings to achieve flight.

The biomimetic robotic platform, dubbed Bat Bot B2, is an autonomous flying robot. The wing mechanics are controlled by a brushless DC motor for the wing flapping along with four wings actuators to provide linear motion that allows the wings to further change shape in flight. The wings are made of a 56-micron, silicone-based membrane (thinner than an average condom), which for sure helps with their elasticity as well as reducing overall weight, which is only 93 grams.

The bat has only made twenty flights so far, ranging up to 30 meters with some rough landings. It’s not much yet, but the prototype looks pretty slick. We covered another bat bot back in 2012 but the original information is no longer available, and we don’t know what happened to that project. There was also no video. In contrast, you can watch Bat Bot B2 glide.

Continue reading “I’m BatBot”