Learning From Transparent Microchips

Microchips and integrated circuits are usually treated as black boxes; a signal goes in, and a signal goes out, and everything between those two events can be predicted and accurately modeled from a datasheet. Of course, the reality is much more complex, as any picture of a decapped IC will tell you.

[Jim Conner] got his hands on a set of four ‘teaching’ microchips made by Motorola in 1992 that elucidates the complexities of integrated circuitry perfectly: instead of being clad in opaque epoxy, these chips are encased in transparent plastic.

The four transparent chips are beautiful works of engineering art, with the chip carriers, the bond wires, and the tiny square of silicon all visible to the naked eye. The educational set covers everything from resistors, n-channel and p-channel MOSFETS, diodes, and a ring oscillator circuit.

[Jim] has the chips and the datasheets, but doesn’t have the teaching materials and lab books that also came as a kit. In lieu of proper pedagogical technique, [Jim] ended up doing what any of us would: looking at it with a microscope and poking it with a multimeter and oscilloscope.

While the video below only goes over the first chip packed full of resistors, there are some interesting tidbits. One of the last experiments for this chip includes a hall effect sensor, in this case just a large, square resistor with multiple contacts around the perimeter. When a magnetic field is applied, some of the electrons are deflected, and with a careful experimental setup this magnetic field can be detected on an oscilloscope.

[Jim]’s video is a wonderful introduction to the black box of integrated circuits, but the existence of clear ICs leaves us wondering why these aren’t being made now. It’s too much to ask for Motorola to do a new run of these extremely educational chips, but why these chips are relegated to a closet in an engineering lab or the rare eBay auction is anyone’s guess.

Childhood Tech Exposure Is Slowly Killing The Keyboard

I see the disturbing trend of moving away from keyboards as input devices — and I’m talking about a real, physical keyboard. This isn’t a matter of one decision that kills the keyboard, but an aggregate that is slowly changing the landscape. If you blink, you’ll miss it. We will not find ourselves in a world without keyboards, but in one where most of the available keyboards suck.

Rise of the Virtual Keyboard Generation

Is swipe-style keying the future of coding?
Is swipe-style keying the future of coding?

Tablets are great for screwing around, but when you want to get real work done in a reasonable amount of time, you grab a physical keyboard. In this scenario I don’t see the problem being those in the workforce going away from keyboards; it’s how the younger generations are learning to interact with technology that is troubling. The touchscreen is baby’s first computer. Families gather and the kids are handed their parent’s tablets while the grown-ups watch the game. More and more schools are outfitting classrooms with tablets, and for this I’m an advocate. Getting kids involved early in technology is imperative; knowledge evolves much more rapidly than printed textbooks. The tablet is a powerful tool in both of these areas. But most of the screen time kids get is with touchscreens and no physical keyboard.

How much time are K-12 kids spending in front of a physical keyboard? In the United States, if keyboard (typing) classes exist at all in a public school’s curriculum they’re usually only one-semester. Students who spend half of Elementary school using a tablet, and just one semester at a keyboard, are bound to prefer touchscreen-based entry over a physical keyboard.

Keyboard Erosion

We’ve already seen a strong push into touch-screens on laptops as the tablet market has grown. This is not necessarily a bad thing. Think of the computer mouse, it didn’t replace the keyboard, but augmented it and now is seen as a tool that itself is a necessity.

Continue reading “Childhood Tech Exposure Is Slowly Killing The Keyboard”

Hacking Education; Project-Based Learning Trumps the Ivory Tower

Project-based learning, hackathons, and final projects for college courses are fulfilling a demand for hands-on technical learning that had previously fallen by the wayside during the internet/multi-media computer euphoria of the late 90’s. By getting back to building actual hardware yourself, Hackers are influencing the direction of education. In this post we will review some of this progress and seek your input for where we go next.

Continue reading “Hacking Education; Project-Based Learning Trumps the Ivory Tower”

Hackerspace Tours: Pasadena City College

Pasadena City College is putting together an amazing combination of tools, education techniques, and innovative projects pinning them on the map as one of the best hackerspaces in the Southern California area. Led by [Deborah Bird], the Director of the Design Technology Pathway at PCC, and Sandy Lee the DTP Faculty Chair, this Fab Lab provides students with cutting-edge workshops and internships that will define future jobs.

We were invited to the space by Joan Horvath, the VP of Business Development over at a local 3D printing store called Deezmaker, after meeting her at an Arduino electronics class taught by a young, talented maker named [Quin]. When we arrived, we were greeted by several students who were working on a 3D printed portable map for the blind which was created for an elementary school nearby. The team behind the design attempted to step out of the visual world and into unfamiliar unsighted territory. One of the members gave us a tour of the space showing us the tools and resources they had made available to PCC students. A variety of 3D printers, ventilators, CNC machines, laser cutters, metal lathes, and even a chainsaw were found inside.

Continue reading “Hackerspace Tours: Pasadena City College”

SparkFun takes their educational show on the road

sparkfun-national-education-tour

They’ve bought an RV and are headed for your state with buckets full of hobby electronic hardware. It’s SparkFun’s National Education tour and if you want them to host a workshop for kids in your area now’s the time to sign up!

It’s no stretch to say that our everyday lives are tightly bound with technology. Chances are every one of the kids in this picture will walk around with an embedded system in their pockets by the time they hit middle school if not earlier (seriously, many of them have the newest generation of high-end smart phones). The sad fact is that nearly 100% will never have any idea how the hardware in those devices functions. And that’s where we think this program really shines.

SparkFun is scheduling 50 stops where $1000 of the cost is subsidized. The team will work with each school/organization to come up with an appropriate workshop for the age of the students and their base knowledge on the topic. Hopefully this will inspire a new generation of hardware hackers who will eventually contribute to using technology to solve world issues. Check out their promo clip after the jump.

We mentioned subsidized visits. The program still costs $1500 and will go up to $2500 after the first 50 stops. But the hardware used in the workshop stays with the kids. And we hope that the $37.50-$125/head price tag will be seen as a worthwhile investment in getting kids interested in more than just entertaining themselves with the social medial offerings running on the hardware.

Continue reading “SparkFun takes their educational show on the road”

Motivating Engineering Students with Microcontrollers

We see a lot of microcontroller based hacks around here, and it’s not hard to see why learning how to use microcontrollers is valuable to prospective engineeer. Unfortunately, microcontroller courses are dreaded by students since they focus on theory instead of application. In The First Lecure, [Colin] talks to a class of engineering students about how to get practical with microcontrollers.

He starts with an overview of a bomb countdown project that he used to learn the basics of microcontrollers. This started as a 555 based timer, but he ended up using a PIC18 after having issues with timing and reliability. Next, he discusses a paintball sentry gun inspired by a Hackaday post.  He finishes off some advice and gives the students some hardware: a Pickit2 programmer and a Saleae Logic Analyzer.

It’s easy to lose motivation due to the heavy focus on theory in engineering. [Colin]’s advice to start building stuff will hopefully motivate these students to take an interest in microcontrollers. We also like how he advises students to read Hackaday. Check out the full video of the lecture after the break.

Continue reading “Motivating Engineering Students with Microcontrollers”

Sparkfun Electronics launches an educational site

Sparkfun Electronics has launched an educational web site with a full curriculum of classes being held at Sparkfun Headquarters. If you don’t live nearby, no problem. You can download the entire curriculum as well. It appears that they will have a tutorial section for those who prefer a per-project approach, but that area is still “coming soon”. We love to see people educating others. Good job Sparkfun, looking forward to seeing more content on there.