Hackaday Prize Entry: Lucid Dreaming Research

Lucid dreaming is one of the rare psychological phenomenon terrible sci-fi frequently gets right. Yes, lucid dreaming does exist, and one of the best ways to turn a normal dream into a lucid dream is to fixate on a particular object, sound, or smell. For their Hackaday Prize entry, [Jae] is building a device to turn the electronic enthusiast community on to lucid dreaming. It’s a research platform that allows anyone to study their own dreams and access a world where you can do anything.

The core of this project is an 8-channel EEG used to measure the electrical activity in the brain during sleep. These EEG electrodes are fed into a 24-bit ADC which is sampled 250 times per second by an ARM Cortex M4F microcontroller. The captured data is recorded or sent to a PC or smartphone over a Bluetooth connection where a familiar sound can be played (think of the briefcase in Inception), or some other signal that will tell the dreamer they’re dreaming.

We’ve seen a few similar builds in the past, most famously a NeuroSky MindWave headset turned into a comfortable single-channel EEG-type device. The NeuroSky hardware is limited, though, and a setup with proper amplifiers and ADCs will be significantly more helpful in debugging the meatspace between [Jae]’s ears.

Hacklet 105 – More Mind And Brain Hacks

A mind is a terrible thing to waste – but an awesome thing to hack. We last visited brain hacks back in July of 2015. Things happen fast on Hackaday.io. Miss a couple of days, and you’ll miss a bunch of great new projects, including some awesome new biotech hacks. This week, we’re checking out some of the best new mind and brain hacks on Hackaday.io

We start with [Daniel Felipe Valencia V] and Brainmotic. Brainmotic is [Daniel’s] entry in the 2016 Hackaday Prize. Smart homes and the Internet of Things are huge buzzwords these days. [Daniel’s] project aims to meld this technology with electroencephalogram (EEG). Your mind will be able to control your home. This would be great for anyone, but it’s especially important for the handicapped. Brainmotic’s interface is using the open hardware OpenBCI as the brain interface. [Daniel’s] software and hardware will create a bridge between this interface and the user’s home.

 

biofeed1Next we have [Angeliki Beyko] with Serial / Wireless Brainwave Biofeedback. EEG used to be very expensive to implement. Things have gotten cheap enough that we now have brain controlled toys on the market. [Angeliki] is hacking these toys into useful biofeedback tools. These tools can be used to visualize, and even control the user’s state of mind. [Angeliki’s] weapon of choice is the MindFlex series of toys. With the help of a PunchThrouch LightBlue Bean she was able to get the EEG headsets talking on Bluetooth. A bit of fancy software on the PC side allows the brainwave signals relieved by the MindFlex to be interpreted as simple graphs. [Angeliki] even went on to create a Mind-Controlled Robotic Xylophone based on this project.

brainhelmetNext is [Stuart Longland] who hopes to protect brains with Improved Helmets. Traumatic Brain Injury (TBI) is in the spotlight of medical technology these days. As bad as it may be, TBI is just one of several types of head and neck injuries one may sustain when in a bicycle or motorcycle accident. Technology exists to reduce injury, and is included with some new helmets. Many of these technologies, such as MIPS, are patented. [Stuart] is working to create a more accurate model of the head within the helmet, and the brain within the skull. From this data he intends to create a license free protection system which can be used with new helmets as well as retrofitted to existing hardware.

mindwaveFinally we have [Tom Meehan], whose entry in the 2016 Hackaday Prize is Train Your Brain with Neurofeedback. [Tom] is hoping to improve quality of life for people suffering from Epilepsy, Autism, ADHD, and other conditions with the use of neurofeedback. Like [Angeliki ] up above, [Tom] is hacking hardware from NeuroSky. In this case it’s the MindWave headset. [Tom’s] current goal is to pull data from the TAGM1 board inside the MindWave. Once he obtains EEG data, a Java application running on the PC side will allow him to display users EEG information. This is a brand new project with updates coming quickly – so it’s definitely one to watch!

If you want more mind hacking goodness, check out our freshly updated brain hacking project list! Did I miss your project? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Brain Waves Can Answer Spock’s (and VR’s) Toughest Question

In Star Trek IV: The Voyage Home, the usually unflappable Spock found himself stumped by one question: How do you feel? If researchers at the University of Memphis and IBM are correct, computers by Spock’s era might not have to ask. They’d know.

[Pouya Bashivan] and his colleagues used a relatively inexpensive EEG headset and machine learning techniques to determine if, with limited hardware, the computer could derive a subject’s mental state. This has several potential applications including adapting virtual reality avatars to match the user’s mood. A more practical application might be an alarm that alerts a drowsy driver.

Continue reading “Brain Waves Can Answer Spock’s (and VR’s) Toughest Question”

Kay Igwe Explains Brain Gaming Through SSVEP


We had some incredible speakers at the Hackaday SuperConference. One of the final talks was given by [Kay Igwe], a graduate electrical engineering student at Columbia University. [Kay] has worked in nanotechnology as well as semiconductor manufacturing for Intel. These days, she’s spending her time playing games – but not with her hands.

Many of us love gaming, and probably spend way too much time on our computers, consoles, or phones playing games. But what about people who don’t have the use of their hands, such as ALS patients? Bringing gaming to the disabled is what prompted  [Kay] to work on Control iT, a brain interface for controlling games. Brain-computer interfaces invoke images of Electroencephalography (EEG) machines. Usually that means tons of electrodes, gel in your hair, and data which is buried in the noise.

[Kay Igwe] is exploring a very interesting phenomenon that uses flashing lights to elicit very specific, and easy to detect brain waves. This type of interface is very promising and is the topic of the talk she gave at this year’s Hackaday SuperConference. Check out the video of her presentation, then join us after the break as we dive into the details of her work.

Continue reading “Kay Igwe Explains Brain Gaming Through SSVEP”

School Of Friends Use Thought Control On A Shark

[Chip Audette] owns (at least) two gadgets: one of those remote control helium-filled flying shark (an Air Swimmer), and an OpenBCI EEG system that can read brain waves and feed the data to a PC. Given that information, it can hardly surprise you that [Chip] decided to control his flying fish with his brain.

Before you get too excited, you have to (like [Chip]) alter your expectations. While an EEG has a lot of information, your direct thoughts are (probably) not readable. However, certain actions create easily identifiable patterns in the EEG data. In particular, closing your eyes creates a strong 10Hz signal across the back of the head.

Continue reading “School Of Friends Use Thought Control On A Shark”

Hacklet 56 – Brain Hacks

The brain is the most powerful – and least understood computer known to man. For these very reasons, working with the mind has long been an attraction for hackers, makers, and engineers. Everything from EEG to magnetic stimulus to actual implants have found their way into projects. This week’s Hacklet is about some of the best brain hacks on Hackaday.io!

teensy-bio[Paul Stoffregen], father of the Teensy, is hard at work on Biopotential Signal Library, his entry in the 2015 Hackaday Prize. [Paul] isn’t just hacking his own mind, he’s creating a library and reference design using the Teensy 3.1. This library will allow anyone to read electroencephalogram (EEG) signals without having to worry about line noise filtering, signal processing, and all the other details that make recording EEG signals hard. [Paul] is making this happen by having the Teensy’s cortex M4 processor perform interrupt driven acquisition and filtering in the background. This leaves the user’s Arduino sketch free to actually work with the data, rather than acquiring it. The initial hardware design will collect data from TI ADS129x chips, which are 24 bit ADCs with 4 or 8 simultaneous channels. [Paul] plans to add more chips to the library in the future.

 

bioxNext up is [Jae Choi] with Lucid Dream Communication Link. [Jae] hopes to create a link between the dream world and the real world. To do this, they are utilizing BioEXG, a device [Jae] designed to collect several types of biological signals. Data enters the system through several active probes. These probes use common pogo pins to make contact with the wearer’s skin. [Jae] says the active probes were able to read EEG signals even through their thick hair! Communication between dreams and the real world will be accomplished with eye movements. We haven’t heard from [Jae] in awhile – so we hope they aren’t caught in limbo!

bioloop[Qquuiinn] is working from a different angle to build bioloop, their entry in the 2015 Hackaday Prize. Rather than using EEG signals, [Qquuiinn] is going with Galvanic Skin Response (GSR). GSR is easy to measure compared to EEG signals. [Qquuiinn] is using an Arduino Pro Mini to perform all their signal acquisition and processing. This biofeedback signal has been used for decades by devices like polygraph “lie detector” machines. GSR values change as the sweat glands become active. It provides a window into a person’s psychological or physiological stress levels. [Qquuiinn] hopes bioloop will be useful both to individuals and to mental health professionals.

biomonitorFinally we have [Marcin Byczuk] with Biomonitor. Biomonitor can read both EEG and electrocardiogram (EKG) signals. Unlike the other projects on today’s Hacklet, Biomonitor is wireless. It uses a Bluetooth radio to transmit data to a nearby PC or smartphone. The main processor in Biomonitor is an 8 bit ATmega8L. Since the 8L isn’t up to a lot of signal processing, [Marcin] does much of his filtering the old fashioned way – in hardware. Carefully designed op-amp based active filters provide more than enough performance when measuring these types of signals. Biomonitor has already found it’s way into academia, being used in both the PalCom project, and brain-computer interface research.

If you want more brain hacking goodness, check out our brain hacking project list! Did I miss your project? Don’t be shy, just drop me a message on Hackaday.io. That’s it for this week’s Hacklet, As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Muse Headset Teardown

Muse EEG Headset Teardown

[Lady Ada] over at Adafruit just did a delightful tear down of the Muse EEG headset.

The Muse headset is a rather expensive consumer-grade EEG headset that promises better meditation with the ability to track your brainwaves in order to go into a deeper trance. We’re not much for meditating here at Hackaday, but the EEG sensors really do work. It’s pretty cool to see the insides of this without forking out $300 ourselves for one we might break.

Like most EEG headsets, they weren’t really designed to be worn while sleeping. Two bulky pods over the ears hold the battery and charging circuit on one side, and the brains on the other. The neat part about it is a little adjustable metal piece which allows for adjustment on the strap while maintaining all the electrical connections. A flexible circuit houses forehead electrodes which go along the length of the band.

In the past we’ve seen work done on the Lucid Scribe project, using a modified Neurosky Mindwave EEG (at $99 it’s much cheaper to hack). The idea is to be able to monitor your sleep cycles accordingly, and then give audible cues to the dreamer in order to “wake up” inside the dream. Think of the Inception music.

Unfortunately it doesn’t look like the Muse will be any better for lucid dreaming. If you were able to decouple the electrodes from the rest of the headset,  then it might just work.

Continue reading “Muse EEG Headset Teardown”