Counting Laps and Testing Products with OpenCV

It’s been about a year and a half since the Batteroo, formally known as Batteriser, was announced as a crowdfunding project. The premise is a small sleeve that goes around AA and AAA batteries, boosting the voltage to extract more life out of them. [Dave Jones] at EEVblog was one of many people to question the product, which claimed to boost battery life by 800%.

Batteroo did manage to do something many crowdfunding projects can’t: deliver a product. Now that the sleeves are arriving to backers, people are starting to test them in the wild. In fact, there’s an entire thread of tests happening over on EEVblog.

One test being run is a battery powered train, running around a track until the battery dies completely. [Frank Buss] wanted to run this test, but didn’t want to manually count the laps the train made. He whipped up a script in Python and OpenCV to automate the counting.

The script measures laps by setting two zones on the track. When the train enters the first zone, the counter is armed. When it passes through the second zone, the lap is recorded. Each lap time is kept, ensuring good data for comparing the Batteroo against a normal battery.

The script gives a good example for people wanting to play with computer vision. The source is available on Github. As for the Batteroo, we’ll await further test results before passing judgement, but we’re not holding our breath. After all, the train ran half as long when using a Batteroo.

Feel Better About Yourself With These Ugly Repairs

A fun thread over at the EEVblog forum starts off with [TerraHertz]’s triangle-peg, square-hole capacitor repair job and goes entertainingly down-hill from there.

Everything from horrifying eBay purchases to work (horror) stories can be found in this thread. But you can learn something too. Did you know the correct way to fix a mercury switch stored in the incorrect orientation is to whack it against a table really hard?

We enjoyed the cigarette box shroud used to fix a graphics card with a defective fan. We’re still not sure about the person who managed to Dremel bits off a graphics card and end up with a working PCI-e card. That one may be a troll.

Regardless, it’s a lot of fun, spanning the hilariously bad and the seriously impressive. We would not be surprised if some of these people met the devil at the crossroads for some soldering skill. Do any of you have an interesting or ugly repair to share? We’d love to see it.

Hackaday Links: April 3, 2016

April Fool’s Day was last Friday, and the Internet was garbage for a day. Our April Fool’s prank was amazing, and in a single day garnered more views than the Raspberry Pi 3 launch announcement from a month prior. There just might be a market here for Apple. Here’s a short roundup of some of the best electronics April Fool’s posts:

This, surprisingly, was not an April Fool’s post. [Dave Jones] has been looking to upgrade his workspace for a few years now. He’s finally found a place. It’s the old Altium office in Sydney. [Dave] worked at Altium before spinning up the EEVblog, so this really is his old stomping grounds. It’s 4000 square meters (43,000 square feet), and exactly 3950 square meters larger than his current lab. What is he going to do with all that space? He’s looking for suggestions, but I would suggest an awesome model train layout. A [Dave Haynie]-style tour would also be acceptable.

Yesterday was the unofficial geekhack / deskthority / r/mechanicalkeyboards SoCal Mechanical Keyboard meetup at Datamancer in Montclair, CA. I was there, got a Control key to replace the Caps Lock key on my Novatouch, and took a lot of pictures.

It’s a presidential election year in the US, and that means millions of people are going to make America great again by polluting their front yard with campaign signs. These campaign signs are usually made out of coroplast, a material that looks like corrugated cardboard, but is made out of dead dinosaurs instead of dead trees. Coroplast is a very interesting material, and [uminded] tipped us off to some guy that makes mini speedboats in this rather uncommon material.

There are some things you just shouldn’t do. Combining octocopters with chainsaws, for example. You shouldn’t do it, but someone will anyway, and YouTube exists. Here’s an octocopter with a chainsaw.

Foxconn is buying Sharp. Sharp has a rather large portfolio of LEDs and optoelectronics, but this deal is mostly for Sharp’s large contract manufacturing business.

Fail of the Week: Dave Jones and the Case of the Terrible Tablet

Nothing spices up a quiet afternoon like the righteous indignance of an upset engineer, especially if that engineer is none other than [Dave Jones], on his EEVblog YouTube Channel. This week [Dave] has good reason to be upset. A viewer sent him what looked to be a nondescript 2010 era tablet from a company called Esinomed. From the outside it looked like a standard issue medical device. Opening up the back panel tells a completely different story though. This thing is quite possibly the worst hack job [Dave] (and we) have ever seen. This is obviously some kind of sales demo or trade show model. Even with that in mind, this thing is a fail.

wtf-solderThe tablet is based upon an off-the-shelf embedded PC motherboard and touchscreen controller. [Dave] took some offense at the hacked up USB connector on the touchscreen. We have to disagree with [Dave] a bit here, as the video seems to show that a standard mini-b connector wouldn’t have fit inside the tablet’s case. There’s no excuse for the USB cable shield draped over the bare touch controller board though. Things go downhill from there. The tablet’s power supply is best described as a bizarre mess. Rather than use a premade DC to DC converter, whoever built this spun their own switch mode power supply on a home etched board. The etching job looks good, but everything else, including the solder job, is beyond terrible. All the jumps and oddly placed components make it look like a random board from the junk bin was used to build this supply.

The story gets even worse with the batteries. The tablet has horribly hand soldered NiMH cells shoved here, there and everywhere. Most of the cells show split shrink wrap – a sure sign they have been overheated. It’s hard to tell from the video, but it appears as if a few cells have their top mounted vent holes covered with solder. That’s a great way to turn a simple rechargeable battery into a pipe bomb. Batteries can be safely hand soldered – Radio Controlled modelers did it for decades before LiPo cells took over.

We’ve all hacked projects together at the last minute; that’s one of the things we celebrate here on Hackaday. However, since this is a commercial medical device (with serial number 11 no less) we have to stamp this one as a fail.

Continue reading “Fail of the Week: Dave Jones and the Case of the Terrible Tablet”

Hackaday Links: September 6, 2015

The MeArm is a cool little robot arm that can be controlled with just about any microcontroller. There’s a new version of it up on Thingiverse.

Here’s something to get kids interested in robotics: the GoBox is a robot kit with multiple ‘missions’ delivered monthly. The robot is based on the Raspberry Pi and Scratch – the Apple II and BASIC of today, I guess.

What happens when a popular electronics YouTuber completely debunks a product? Hundreds of dislikes appear on the YouTube videos he made. Hundreds of dislikes from Vietnam appeared on [Dave Jones]’ videos debunking the Batterizer. In fact, more people from Vietnam disliked the video than viewed it. Yes, weird YouTube dislike farms like this exist, and if you can do it on the Internet, you can also pay people to do it on the Internet.

The ESP8266 is slowly becoming a board that’s as easy to use as an Arduino. Now there’s a board that turns it into an Arduino.

The Vintage Computer Festival Midwest was last week,  and [chris537a] shot a video of all the cool stuff. [vikram4819] put an album up on imgur. Yes, someone was selling a Sparcbook for $300. I’m holding out for a PowerPC ThinkPad, though…

Washington DC area hackers, don’t forget to RSVP for the Hackaday Meetup on Saturday. Bring a hack to show off and spend the evening socializing with the Hackaday community. Check out the announcement post for more info.

Crowdfunding Follies: Debunking The Batteriser

It’s not on Kickstarter yet, but this product is already making its media debut, with features in all the tech blogs, an astonishing amount of print outlets, and spouted from the gaping maws of easily impressed rubes the world over. What is it? It’s the Batteriser, a tiny metal contraption that clips over AA, C, and D cells that reclaims the power trapped inside every dead battery. Yes, every dead battery you’ve ever thrown away still has up to 80% of its power remaining. Sounds like complete hogwash, right? That’s because it is.

[Dave Jones] put together a great video on the how comes and why nots of the Batteriser, and while doing so gives a great tutorial for debunking a product, heavily inspired by [Carl Sagan]’s Baloney Detection Kit. The real  debunking starts by verifying any assumptions, and the biggest fault of the Batteriser campaign is claiming 80% of a battery’s power is unused. Lucky for us, [Dave] has tons of tools and graphs to demonstrate this is not the case.

To verify the assumption that battery-powered devices will brown out after using only 20% of a battery’s available power, [Dave] does the most logical thing and looks at the data sheets for a battery. After using 20% of available power, these datasheets claim these batteries should be around 1.3V. Do devices brown out at 1.3V? Hook it up to a programmable power supply and find out.

It turns out every battery-powered device [Dave] could find worked perfectly until around 1.1V. Yes, that’s only 0.3V difference from 1.4V claimed by the patent for the Batteriser, but because of the battery discharge curve, that means 80% of the power in a normal device is already being used up. The premise of the Batteriser is invalid, and [Dave] demonstrates it’s a complete scam.

If a through debunking of the Batteriser’s claims wasn’t enough, [Dave] goes on to explain how it may actually be dangerous. The positive terminal of a battery is also the metal can, while the negative terminal is just a tiny nib of metal seperated from the rest of the battery by a gasket. Since the Batteriser is made of metal and serves as the ground for the boost converter circuit, it’s very, very close to shorting through the branding and logo emblazoned on a mylar wrapping each battery is shrouded with. One tiny nick in this insulator, and you have a direct short across the battery. That’s going to turn to heat, and there’s a lot of energy in a D cell; a failure mode for the Batteriser is a fire. That’s just terrible product design.

Video below.

Continue reading “Crowdfunding Follies: Debunking The Batteriser”

Hacklet 44 – Teardowns

Just about every hacker, maker and tinkerer out there received their early education the same way: A screwdriver in one and a discarded bit of electronics in the other. There is no better way to find out how something works than cracking it open and examining each piece.  In recent years, teardown videos have become popular on YouTube, with some of the great examples coming from users like [EEVblog], [mikeselectricstuff], and [The Geek Group]. This week’s Hacklet is all about the best teardown projects on!

copierWe start with [zakqwy] and his Savin C2020 Teardown. Photocopiers (and multifunction machines) are the workhorses of the modern office. This means there are plenty of used, abused, and outdated photocopiers available to hackers. [Zakqwy] got this monster when it started misbehaving at his office. Copiers are a venerable cornucopia of motors, gears, sensors (lots and lots of breakbeam sensors) and optics. The downside is toner: it’s messy, really bad to breathe, and if you don’t wear gloves it gets down into the pores of your skin, which takes forever to get out. [Zakqwy] persevered and found some awesome parts in his copier – like an  Archimedes’ screw used to transport black toner.

wemoNext up is [Bob Blake] with Belkin WeMo Insight Teardown. [Bob] wanted a WiFi outlet, but wasn’t about to plug something in to both his power grid and his network without taking it apart first. [Bob] did an awesome job of documenting his teardown with lots of great high resolution photos – we love this stuff! He found a rather well thought out hardware design. The Insight has 3 interconnected PCBs inside. The power switching and supply circuits are all on one board. It includes slots and the proper creep distances one would expect in a design that will be carrying 120V AC mains power. A small daughter board holds an unknown chip – [Bob] is guessing it is the power sensing circuitry. A third board a tucked in at the top of the module holds the main CPU, a Ralink/MediaTek RT5350F SoC, RAM, and the all important WiFi antenna.


x-ray[Drhatch] took things into the danger zone with an X-ray Head Teardown. We’re not sure if [Drhatch] is a real doctor, but he does have a Heliodent MD dental X-ray head. Modern X-ray machines are generally radiation safe if they’re not powered up. Radiation isn’t the only dangers to worry about though – there are latent charged capacitors and cooling oils which may contain nasty chemicals like PCBs, among other things. [Drhatch] found some pretty interesting design decisions in his X-ray head. The tube actually fires through the cylindrical high voltage transformer. This means the transformer acts as a beam collimator, focusing the X-ray beam down like a lens. He also found plenty of lead shielding. Interestingly there are two thickness of lead in the housing. Shielding close to the tube is 1 mm thick, while shielding a bit further away is only 0.7 mm thick.


3phaseFinally, we have [danielmiester] with Inside a 3ph AC Motor Controller(VFD). [Daniel] tore down a Hitachi Variable-Frequency Drive (VFD) with the hopes of creating a frequency converter for a project. These high voltage, high power devices have quite a bit going on inside, so the conversion became a teardown project all its own. VFDs such as this one are used in industry to drive high power AC motors at varying speeds efficiently. As [Daniel] says, the cheaper ones are ” just really fancy PWM modules”. Handling 1.5 kW is no joke though. This VFD had a large brick of power transistors potted into its heat sink. The controller board was directly soldered to the transistors, as well as the rectifier diodes for the DC power supply. [Daniel] was doing some testing with the unit powered up, so he built a custom capacitor discharge unit from 3 C7 Christmas lights. Not only did they keep the capacitors discharged, they provided an indication that the unit was safe. No light means no charge.

Not satisfied? Want more teardown goodness? Check out our freshly minted Teardown List!

That’s about all the time we have for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of!