Building EL Displays On A PCB

ELElecrolumiscent displays have seen a huge swing in popularity recently, but only in limited forms like EL wire or flat EL panels. You can, of course, cut and bend these wires and panels to suit any purpose, but custom shaped EL displays are just the bee’s knees. They’re not hard to fabricate, either: with cheap custom PCBs, all it takes to make custom EL panels is just a few chemicals.

[Nick]‘s method of fabricating custom EL displays uses an exposed copper layer on a PCB you’d pick up from OSHpark or any of the random board houses in China. The process consists of designing a display – be it a few letters, pixels, or a seven-segment arrangement. The display ‘stack’ is a layer of painted-on dialectric, a phospor, and finally a translucent conductive ink that connects the display segments to ground. It looks like an extremely easy process, and from the pictures it looks like [Nick] is making some EL displays of reasonable quality.

[Nick]‘s work was inspired by the grand poobah of homebrew electrolumiscent displays, [Jeri Ellsworth], who managed to make a similar EL pixel on a PCB. [Nick]‘s display looks great, though, and with a little work some custom segment displays should be very possible.

Laptop Keyboard EL Panel Backlight

keyboard-el-panel-backlight

[nullpointr] wanted a backlit keyboard for his Asus Transformer Prime so that it would be a bit easier to use in low-light situations. He considered a few different options and ended up adding electroluminescent panels behind the keys.

Those paying close attention might wonder why we called this a laptop in the title. Well, it’s a tablet with a keyboard dock and that’s a mouthful. This actually really helps to simplify the modifications because the motherboard and other bits are all in the screen portion of the device. EL panels are also a nice choice because you can cut them to size and they still function. With a bit of case work, three panels were made to fit side-by-side.

The part that just isn’t going to make it in the original enclosure is the inverter that drives the panels. It’s the black box to the left. [nullpointr] added a USB-form-factor jack to the side of the case that allows the inverter to be disconnected quite easily. This way the Transformer Prime can still go with him on the road, it just won’t light up unless he also hauls around that add-on.

Way way back we saw someone do this with fiber optics and an LED. Unfortunately that project link seems to be dead so we figure it’s about time someone revisited the concept.

Glowing Super Bowl helmets

glowing-football-helmets-adafruit

These geeky Superbowl decorations glow thanks to the EL panel hack which [Becky Stern] created. It’s almost impossible to make out in this image, but the EL panels have been applied to the surface of the helmet. On the San Francisco helmet you can just make out the black connector and cord at the bottom of the F.

El panels are a lot like EL wire (but they’re flat) in that the phosphors are excited when connected to a high voltage AC supply. You can cut the panels into shapes without a problem. The technique used here is to create a black vinyl mask to go over the top of the panel. This makes cutting the panel a lot easier.

The mask sticker is made on a vinyl cutter. [Becky] is a master at using the vector tool as you can see in the video after the break. She outlined each team logo with paths to create a file which the cutter can use. From there it took several tries to get the sticker just right as the curve of the helmet distorts the logos just a bit. Once it was dialed in she stuck the vinyl on the El panel and cut around the perimeter.

The Adafruit team sure loves to use electroluminescent accents.

Continue reading “Glowing Super Bowl helmets”

Months of failure lead up to this EL panel dimmer that pulses to the music

el-panel-dimmer

Way back in March [Ch00f] took on a for-hire project to make a suit that lights up to the music. He decided to build something based around a pulsating EL panel. He’s put a lot of time and tried of a few different techniques, but he finally has a working EL panel dimmer.

This is a saga we’ve kept our eye on. The fall seems to have been good to him, after a failure using TRIACS he managed to adjust the brightness of some EL wire by messing with the current going to the driver’s oscillator. Standing on the shoulders of that success he designed the board seen above by getting serious about audio signal processing. There’s a microphone on the board which picks up sound which is then processed into a signal responsible for the brightness of the EL panel.

There’s a demo video after the break, but you’ll want to dig into his article to get all the gritty details.

Continue reading “Months of failure lead up to this EL panel dimmer that pulses to the music”

Building a sound reactive EL panel and learning something in the process

We’ve seen a lot of builds using electroluminescent wire, usually in the realm of costumes and props. Unfortunately, most electrical engineers don’t deal with blinking and dimming EL wire and panels and any tinkerer trying to control electroluminescence doesn’t have a lot of resources on how to control EL stuff. [ch00f] wanted to fill this knowledge gap, so he build a sound reactive EL panel driver and learned a lot in the process.

Nobody really knows how electroluminescent wire and panels work on a molecular level, but [ch00f] did know that changing the direction of an electric field will cause the EL material to glow. Changing the frequency of this electric field will change the EL material’s brightness, so all [ch00f] had to do was make a variable-frequency EL driver – something that’s a lot harder than it sounds.

We won’t bore you with the details because we  couldn’t do [ch00f]‘s write up any justice. We will skip to the end and tell you [ch00f] was able to make a sound reactive EL panel after a month of work that included making his own transformers and doing a whole bunch of math. You can check out the video of [ch00f]‘s [Tony Stark]-esque EL panel after the break.

Continue reading “Building a sound reactive EL panel and learning something in the process”