Endless Electronic Problems For Solving

We know not everyone who likes to build circuitry wants to dive headfirst into the underlying electrical engineering that makes everything work. However, if you want to, now is a great time. Many universities have most or all of their material online and you can even take many courses for free. If you want an endless pool of solved study problems, check out autoCircuits. It can create many different kinds of electronics problems and their solutions.

You can get a totally random circuit, or choose if you want to focus on DC, AC, two-ports, or several other types of problems. You can also alter the general form of the problem. For example, for a DC analysis, you can have it assign circuit values so that the answer is a value such as 45 ohms, or you can have it just use symbols so that the answer might be i4=V1/4R. You even get to pick the difficulty level and pick certain types of problems to avoid. Just be fast. After the site generates a problem, you have 10 seconds to download it before it is gone forever.

Continue reading “Endless Electronic Problems For Solving”

Retrotechtacular: How Not To Design With Transistors

Consider the plight of a mid-career or even freshly minted electrical engineer in 1960. He or she was perched precariously between two worlds – the proven, practical, and well-supported world of vacuum tube electronics, and the exciting, new but as yet unproven world of the transistor. The solid-state devices had only started making inroads into electronic products relatively recently, and mass production techniques were starting to drive the cost per unit down enough to start including them in your designs. But, your company has a long history with hot glass and no experience with flecks of silicon. What to do?

To answer that question, you might have turned to this helpful guide, “Tubes and Transistors: A Comparative Guide” (PDF link). The fancy booklet, with a great graphic design that our own [Joe Kim] would absolutely love, was the product of the Electron Tube Information Council, an apparently defunct group representing the interests of the vacuum tube manufacturers. Just reading the introduction of this propaganda piece reveals just how worried companies like RCA, General Electric, and Westinghouse must have been as the 1950s turned into the 1960s. The booklet was clearly aimed directly at engineers and sought to persuade them of the vacuum tube’s continued relevance and long-term viability. They helpfully explain that tubes are a reliable, proven technology that had powered decades of designs, and that innovations such as heaterless cathodes and miniaturization were just around the corner. Transistors, we’re told, suffer from “spread of characteristics” that correctly describes the state of materials engineering of silicon and germanium at the time, a thornier problem than dealing with glass and wires but that they had to know would be solved within a few years.

With cherry-picked facts and figures, the booklet makes what was probably in 1960 a persuasive case for sticking with tubes. But the Electron Tube Information Council was fighting a losing battle, and within a decade of swamping engineers with this book, the industry had largely shifted to the transistor. Careers were disrupted, jobs disappeared, and fortunes were lost, but the industry pressed forward as it always does. Still, it’s understandable why they tried so hard to stem the tide with a book like this. The whole PDF is worth a look, and we’d love to have a hard copy just for nostalgia’s sake.

Thanks to [David Gustafik] for the tip.

Fully-functional Oscilloscope On A PIC

When troubleshooting circuits it’s handy to have an oscilloscope around, but often we aren’t in a lab setting with all of our fancy, expensive tools at our disposal. Luckily the price of some basic oscilloscopes has dropped considerably in the past several years, but if you want to roll out your own solution to the “portable oscilloscope” problem the electrical engineering students at Cornell produced an oscilloscope that only needs a few knobs, a PIC, and a small TV.

[Junpeng] and [Kevin] are taking their design class, and built this prototype to be inexpensive and portable while still maintaining a high sample rate and preserving all of the core functions of a traditional oscilloscope. The scope can function anywhere under 100 kHz, and outputs NTSC at 30 frames per second. The user can control the ground level, the voltage and time scales, and a trigger. The oscilloscope has one channel, but this could be expanded easily enough if it isn’t sufficient for a real field application.

All in all, this is a great demonstration of what you can accomplish with a microcontroller and (almost) an engineering degree. To that end, the students go into an incredible amount of detail about how the oscilloscope works since this is a design class. About twice a year we see a lot of these projects popping up, and it’s always interesting to see the new challenges facing students in these classes.

Continue reading “Fully-functional Oscilloscope On A PIC”

Open Hardware For Open Science – Interview With Charles Fracchia

Open Science has been a long-standing ideal for many researchers and practitioners around the world. It advocates the open sharing of scientific research, data, processes, and tools and encourages open collaboration. While not without challenges, this mode of scientific research has the potential to change the entire course of science, allowing for more rigorous peer-review and large-scale scientific projects, accelerating progress, and enabling otherwise unimaginable discoveries.

As with any great idea, there are a number of obstacles to such a thing going mainstream. The biggest one is certainly the existing incentive system that lies at the foundation of the academic world. A limited number of opportunities, relentless competition, and pressure to “publish or perish” usually end up incentivizing exactly the opposite – keeping results closed and doing everything to gain a competitive edge. Still, against all odds, a number of successful Open Science projects are out there in the wild, making profound impacts on their respective fields. HapMap Project, OpenWorm, Sloan Digital Sky Survey and Polymath Project are just a few to name. And the whole movement is just getting started.

While some of these challenges are universal, when it comes to Biology and Biomedical Engineering, the road to Open Science is paved with problems that will go beyond crafting proper incentives for researchers and academic institutions.

It will require building hardware.

Continue reading “Open Hardware For Open Science – Interview With Charles Fracchia”

EEVblog: The Electronics Engineering Video Blog

[youtube=http://www.youtube.com/watch?v=v1YrANSmOGY&fmt=18]
Have you ever wanted to see what it’s like inside of a PCB assembly factory? Have you ever wondered how digital storage oscilloscopes work? If so, be sure to check out the EEVblog podcast. The Electronics Engineering video blog podcast, hosted by [Dave Jones], was created for anyone interested in learning more about electrical engineering. While some knowledge of electronics definitely helps, [Dave]’s thorough explanations and firsthand knowledge in the field of electrical engineering make the video blog easily accessible to beginners in the field. The EEVblog covers a wide range of electronics related topics, offering everything from multimeter reviews to GSM mobile phone audio design advice. In the latest episode (shown above), [Dave] discusses and demonstrates how to solve the infinite resistor problem, involving measuring the resistance at different points of an infinite grid of resistors that all have the same resistance. In addition to giving a detailed explanation, [Dave] created a 14 x 14 grid of 420 10ohm resistors to demonstrate how to solve the problem. While we’ve only mentioned a few episodes here, be sure to check out all 25 episodes of the EEVblog podcast and subscribe to the RSS feed so you’ll never miss an episode.