Weaponizing Elementary Science Experiments

[austiwawa] was playing around with one of those simple linear motors people build as friendly little science experiments. There’s an AA battery in the middle of a set of magnets. When you put it inside of a spring it zips around inside until you run out of spring or magic pixies in the battery.

Of course, the natural question arose, “How do I make it go fast!? Like fast!” After making explosion and woosh noises for a bit (like any good hacker would) he settled down and asked a more specific question. If I made the coil the barrel of an air gun, and then shot the battery out… would it go faster?

So, he built an air cannon. It took some ingenuity and duct tape, but he managed to line the barrel with a copper coil. After that he built an experimental set-up, because making something dangerous is only okay if it’s science. That’s the difference between sensible adults and children.

He shot three “dead” rounds through the cannon, and got a baseline result. These dead rounds were made so by placing the magnets at the improper polarity to forego the motion-boosting properties. Then he shot three live ones through. It went measurably faster! Neat!

What’s the silliest thing you’ve ever seen properly characterized? Let us know in the comments below.

Continue reading “Weaponizing Elementary Science Experiments”

Etching Your Own Metal

It’s been said that with enough soap, one could blow up just about anything. A more modern interpretation of this thought is that with enough knowledge of chemistry, anything is possible. To that end, [Peter] has certainly been doing a good job of putting his knowledge to good use. He recently worked out a relatively inexpensive and easy way to etch metals using some chemistry skill and a little bit of electricity.

After preparing a set of stencils and cleaning the metal work surface, [Peter] sets his work piece in a salt solution. A metal bar is inserted in the other end of the bath, and both it and the work piece are connected to electrodes. The flow of electricity removes some metal from the exposed work surfaces, producing whatever patterns [Peter] wants.

One interesting thing that [Peter] found is that the voltage must stay under 6 volts. This is probably part of the reason it’s relatively easy to etch with even a wall wort. Above that, the iron work piece produces a different ion which can clog the work surface and create undesirable effects. Additionally, since his first experiments with this process he has upgraded the salt bath with magnetic stirrers. He also gets the best results in a very cold environment.

There are many other uses for etching metals, too. Creating your own printed circuit boards comes to mind, but there are plenty of other uses as well. What will you do with this technique?

Brew a Cup of Coffee Without Electricity!

So, wether you’ve blown your house’s breakers while cranking up the power on your latest project or a storm has brought low the local power grid, what do you do if you desperately need coffee with no electricity to power your coffee maker? Make like [austiwawa]: crack it open and bust out the tea lights.

Removing the bottom of the coffee maker is simply done, exposing the resistance heating element. Improvising a jig to hold the coffee maker over an arrangement of five tea lights, the candle flames slowly do the work of heating the element to set the maker in motion.

It’s a solution for after the apocalypse… as long as you can find tea lights, coffee plus a grinder, and for some reason don’t want to use the quick and efficient method of brewing over an actual fire (though kitchen hearths are a rarity these days). Now we kind of want to see this adapted for all kinds of other heat sources. Reflected sunlight anyone?

Continue reading “Brew a Cup of Coffee Without Electricity!”

Swiss Project Looking To Harness Kite Power

Switzerland has bought us many things: the cuckoo clock, cheese with holes in it, and.. kite power? That’s the idea of a Swiss project that is trying to tap the energy of a regular wind that blows between Lake Geneva and the Alps. The group hopes to build large kites that fly at about 150 meters above the ground, with a generator and other components on the ground. The way that this wind energy is converted into electricity is interesting: the kite is pulled up by the wind, spiraling higher and pulling the cable which drives the generator. Once it reaches a maximum height, the kite is trimmed so it sinks down to a lower altitude, and the kite is trimmed again to catch the wind and climb.

It’s a fascinating idea: by controlling the kites, the system could produce power on demand. As long as the wind is up, of course, but in this region of Switzerland, that isn’t an issue, as the wind is very predictable. It doesn’t require as much permanent infrastructure as a wind turbine, and kites are much more attractive than turbines. This makes us wonder if a system like this would be adaptable to a smaller scale: could you build a portable or off-grid system for hiking in windy areas that could charge a battery this way?

The project webpage hasn’t seen any updates since 2013, but the research project seems to still be alive and kicking. Anyone have any details or wild speculation?

(Related, but only tangentially, video of Thomas Dolby lip-synching below the break.)

Via The Bulletin of Atomic Scientists, thanks to [Austin Bentley]

Continue reading “Swiss Project Looking To Harness Kite Power”

“Who is John Galt?” Finally Answered

For those who haven’t read [Ayn Rand’s] philosophical tome Atlas Shrugged, there’s a pretty cool piece of engineering stuffed in between the 100-page-long monologues. Although fictional, a character manages to harness atmospheric static electricity and convert it into kinetic energy and (spoilers!) revolutionize the world. Harnessing atmospheric static electricity isn’t just something for fanciful works of fiction, though. It’s a real-world phenomenon and it’s actually possible to build this motor.

who-is-john-galt-thumbAs [Richard Feynman] showed, there is an exploitable electrical potential gradient in the atmosphere. By suspending a tall wire in the air, it is possible to obtain voltages in the tens of thousands of volts. In this particular demonstration, a hexacopter is used to suspend a wire with a set of needles on the end. The needles help facilitate the flow of electrons into the atmosphere, driving a current that spins the corona motor at the bottom of the wire.

There’s not much torque or power generated, but the proof of concept is very interesting to see. Of course, the higher you can go the more voltage is available to you, so maybe future devices such as this could exploit atmospheric electricity to go beyond a demonstration and do useful work. We’ve actually featured the motor that was used in this demonstration before, though, so if you’re curious as to how a corona motor works you should head over there.

Continue reading ““Who is John Galt?” Finally Answered”

Simplest Electricity Monitoring Solution Yet

Monitoring your home’s energy use is the best way to get a handle on your utility bills. After all, you can’t manage what you can’t measure! The only problem is that most home energy monitoring systems are cumbersome, complicated, or expensive. At least, until now. [Kevin] has created a new electricity meter based on Particle Photons which should alleviate all of these problems.

The Particle Photon (we get confused on the naming scheme but believe this the new version of what used to be called the Spark Core) is a WiFi-enabled development board. [Kevin] is using two, one to drive the display and one to monitor the electricity usage. This part is simple enough, each watt-hour is accompanied by a pulse of an LED on the meter which is picked up by a TLS257 light-to-voltage sensor. The display is a Nextion TFT HMI (touch screen) which is pretty well suited for this application. The data is corralled by emoncms, part of the OpenEnergyMonitor platform, which ties everything together.

For a project that has been done more than a few times, this one does a great job of keeping the price down while maintaining a great aesthetic. Make sure to check out the video below to see it in action.

Continue reading “Simplest Electricity Monitoring Solution Yet”

Disassembled Mouse Keeps Track Of Gas Meter

After building devices that can read his home’s electricity usage, [Dave] set out to build something that could measure the other energy source to his house: his gas line. Rather than tapping into the line and measuring the gas directly, his (much safer) method was to simply monitor the gas meter itself.

The major hurdle that [Dave] had to jump was dealing with an ancient meter with absolutely no modern electronics like some other meters have that make this job a little easier. The meter has “1985” stamped on it which might be the manufacturing date, but for this meter even assuming that it’s that new might be too generous. In any event, the only option was to build something that could physically watch the spinning dial. To accomplish this, [Dave] used the sensor from an optical mouse.

The sensor is surrounded by LEDs which illuminate the dial. When the dial passes a certain point, the sensor alerts an Arduino that one revolution has occurred. Once the Arduino has this information, the rest is a piece of cake. [Dave] used KiCad to design the PCB and also had access to a laser cutter for the enclosure. It’s a great piece of modern technology that helps integrate old analog technology into the modern world. This wasn’t [Dave]’s first energy monitoring system either; be sure to check out his electricity meter that we featured a few years ago.