A Simple EMF Detector And Electroscope You Can Make From Junk Box Parts

2N2222 devices used, but practically any junkbox NPN will do

Electromagnetic fields are everywhere, all around us. Some are generated naturally, but in vast majority of cases, it’s we humans that are generating them with artificial, electronic means. Everything from your mobile phone to the toaster will emit some sort of signal, be it intentional or not. So we think it only befits the general electronics-orientated hacker to have some way of sniffing around for these signals, so here is [Mirko Pavleski] with his take on a very simple pair of instruments to detect both static and dynamic electromagnetic fields.

CMOS clock input connected directly to the antenna. Warning! ESD damage risk!

The first unit (a simple electroscope) uses a cascade of 2N2222 NPN bipolar transistors configured to give a high current gain, so any charge near the antenna will result in increasing currents in subsequent stages, finally illuminating the LED. Simple stuff.

The second unit relies on the extremely high input impedance of the old-school CMOS 4017 decade counter, which is likely of the order of 100 MΩ or even more. Normally you would not leave such a CMOS input floating, or even connect it with too long a PCB trace — lest it pick up a stray signal —but for detecting alternating EM fields, this appears to work just fine. Configured as a simple divide-by-ten, when presenting 50 Hz AC, the LED can be seen to flash at 5 Hz.

Simple stuff, and this scribe has all those exact parts in the junk box, so will be constructing these shortly!

We’ve covered electroscopes for years, here’s a modern twist on a famous classic experiment, and some hair-raising experiments to get you started.

Continue reading “A Simple EMF Detector And Electroscope You Can Make From Junk Box Parts”

Recreating Ben Franklins kite experiment with a drone

Drone Replaces Kite In Recreation Of Famous Atmospheric Electricity Experiment

Finally, someone decided to answer the question that nobody was asking: what if [Benjamin Franklin] had had a drone rather than a kite?

Granted, [Jay Bowles] didn’t fly his electricity-harvesting drone during a thunderstorm, but he did manage to reach some of the same conclusions that [Dr. Franklin] did about the nature of atmospheric electricity. His experimental setup was pretty simple: a DJI Mini2 drone with enough payload capacity to haul a length of fine-gauge magnet wire up to around 100 meters above ground level. A collecting electrode made of metal mesh was connected to the wire and suspended below the drone. Some big nails were driven into the soil to complete the circuit between the drone and the ground.

[Jay] went old-school for a detector, using a homemade electroscope to show what kind of static charge was accumulating on the electrode. Version 1 didn’t have enough oomph to do much but deliver a small static shock, but a larger electrode was able to deflect the leaves of an electroscope, power a beer can version of a Franklin bell, and also run a homemade corona motor. [ElectroBOOM] makes a guest appearance in the video below to explain the physics of the setup; curiously, he actually managed to get away without any injuries this time. Continue reading “Drone Replaces Kite In Recreation Of Famous Atmospheric Electricity Experiment”

Hair-Raising Tales Of Electrostatic Generators

We tend to think of electricity as part of the modern world. However, Thales of Mietus recorded information about static electricity around 585 BC.  This Greek philosopher found that rubbing amber with fur would cause the amber to attract lightweight objects like feathers. Interestingly enough, a few hundred years later, the aeolipile — a crude steam engine sometimes called Hero’s engine — appeared. If the ancients had put the two ideas together, they could have invented the topic of this post: electrostatic generators. As far as we know, they didn’t.

It would be 1663 before Otto von Guericke experimented with a sulfur globe rubbed by hand. This led to Isaac Newton suggesting glass globes and a host of other improvements from other contributors ranging from a woolen pad to a collector electrode. By 1746, William Watson had a machine consisting of multiple glass globes, a sword, and a gun barrel. Continue reading “Hair-Raising Tales Of Electrostatic Generators”

Getting Sparks From Water With Lord Kelvin’s Thunderstorm

In the comments to our recent article about Wimshurst machines, we saw that some hackers had never heard of them, reminding us that we all have different backgrounds and much to share. Well here’s one I’m guessing even fewer will have heard of. It’s never even shown up in a single Hackaday article, something that was also pointed out in a comment to that Wimshurst article. It is the Lord Kelvin’s Water Dropper aka Lord Kelvin’s Thunderstorm, invented in the 1860s by William Thomson, 1st Baron Kelvin, the same fellow for whom the Kelvin temperature scale is named.  It’s a device that produces a high voltage and sparks from falling drops of water.

Continue reading “Getting Sparks From Water With Lord Kelvin’s Thunderstorm”