JB Weld Fixes Cracked Cylinder Heads

There are persistent rumors that the main ingredient in JB Weld is magic. This two-part epoxy that you would normally find on a shelf next to your basic 5-minute epoxy, Titebond, various cyanoacrylates, and Gorilla glue is somehow different. Stories of ‘some guy’ in the Yukon using JB Weld on a cracked engine block abound. These stories are of course met with skepticism.

Now, finally, we have evidence you can use JB Weld to fix an engine. [Project Farm] over on YouTube gave it the ultimate test: he took the cylinder head off a lawnmower, took a grinder to the head, and patched the hole with JB Weld. The head had good compression, and the engine actually ran for 20 minutes before the test was concluded.

If this were a test of a field repair, it would be a test of an extremely crappy field repair. [Project Farm] made no attempt to ensure the piston didn’t make contact with the blob of JB Weld, and in fact, there was some slight knocking from the piston tapping against a blob of epoxy. Still, this repair worked.

While this serves as proof of the feasibility of repairing an engine block with JB Weld, there is one ultimate test of JB Weld epoxy: build an engine out of it. For years, I’ve been casting my leftover JB Weld into a small square plastic container. In a few more years, I’ll have a block of JB Weld ‘stock’, large enough to machine the parts for a small (.049 cc) glow engine, like what you would find in ye olde tymie model planes and cars. Will it work? I have no idea, but now I can’t wait to find out.

Continue reading “JB Weld Fixes Cracked Cylinder Heads”

Casting Machine Bases in Composite Epoxy

When you’re building a machine that needs to be accurate, you need to give it a nice solid base. A good base can lend strength to the machine to ensure its motions are accurate, as well as aid in damping vibrations that would impede performance. The problem is, it can be difficult to find a material that is both stiff and strong, and also a good damper of vibrations. Steel? Very stiff, very strong, terrible damper. Rubber? Great damper, strength leaves something to be desired. [Adam Bender] wanted to something strong that also damped vibrations, so developed a composite epoxy machine base.

[Adam] first takes us through the theory, referring to a graph of common materials showing loss coefficient plotted against stiffness. Once the theory is understood, [Adam] sets out to create a composite material with the best of both worlds – combining an aluminium base for stiffness and strength, with epoxy composite as a damper. It’s here where [Adam] begins experimenting, mixing the epoxy with sand, gravel, iron oxide and dyes, trying to find a mixture that casts easily with a good surface finish and minimum porosity.

With a mixture chosen, it’s then a matter of assembling the final mould, coating with release agent, and pouring in the mixture. The final result is impressive and a testament to [Adam]’s experimental process.

We’ve seen similar builds before — like this precision CNC built with epoxy granite — but detail in the documentation here is phenomenal.

Learn Some Plastic Techniques With This SNES WiiMote Mod

Not all hacks have to be deeply technical. Sometimes a good show of skill is just as impressive. [lyberty5] takes two completely different hunks of plastic and somehow epoxies them into a convincing and, most impressively, reliable chimera.

While the WiiMote’s motion controls certainly caused a lot of wordy debate on the Internet when it was debuted. While everyone and their grandmother who owned a game company rushed out to copy and out-innovate it once they saw Nintendo’s hoard of dragon gold. Most game designers had other thoughts about the concept, mostly that it wouldn’t do for a platformer. So the gamer caught in the middle of it all had to rotate their grip-optimized rectangle 90 degrees and blister their thumbs on tiny buttons to play. Continue reading “Learn Some Plastic Techniques With This SNES WiiMote Mod”

A Short Introduction to Staking and Potting

Staking and potting are not often used in the hobby electronics world, not really entering to the common vernacular. However, everyone who’s ever busted out a glue-gun to convince that dang wire that keeps coming loose to stay has done it.

However, as [Sean Thomas] touches on, staking is not necessarily as easy as a dob of hot glue. There is a method to the madness. [Sean] gives some examples in pictures, but also directs people to the excellent NASA standard methods for staking. It’s surprising how many unintuitive caveats there are to the proper technique.

Potting, or covering everything in epoxy forever, is a great way to get a waterproof, unserviceable, and practically mechanically invincible circuit. The big challenge in potting is picking the right material. A soft silicone, for example, might transfer an unexpected force to an unexpected section of the circuit and cause a mechanical failure. A nice hard epoxy may be too insulating and cause a thermal failure. The standard RTV from the big box store has acetic acid that will eat your components.

These two techniques that come in handy when you need them and worth the bit of reading it takes to get familiar. Have you used either in your own workshop? Let us know the application and the material/techniques you have tried in the comments below.

Homemade Capacitors Of A Mad Scientist

Once upon a time I was a real mad scientist. I was into non-conventional propulsion with the idea of somehow interacting with the quantum vacuum fluctuations, the zero point energy field. I was into it despite having only a vague understanding of what that was and without regard for how unlikely or impossible anyone said it was to interact with on a macro scale. But we all had to come from somewhere, and that was my introduction to the world of high voltages and homemade capacitors.

And along the way I made some pretty interesting, or different, capacitors which I’ll talk about here.

Large Wax Cylindrical Capacitor

As the photos show, this capacitor is fairly large, appearing like a thick chunk of paraffin wax sandwiched between two wood disks. Inside, the lead wires go to two aluminum flashing disks that are the capacitor plates spaced 2.5cm (1 inch) apart. But in between them the dielectric consists of seven more aluminum flashing disks separated by plain cotton sheets immersed in more paraffin wax. See, I told you these capacitors were different.

I won’t go into the reasoning behind the construction — it was all shot-in-the-dark ideas, backed by hope, unicorn hairs, and practically no theory. The interesting thing here was the experiment itself. It worked!

I sat the capacitor on top of a tall 4″ diameter ABS pipe which in turn sat on a digital scale on the floor. High voltage in the tens of kilovolts was put across the capacitor through thickly insulated wires. The power supply contained a flyback transformer and Cockcroft-Walton voltage multiplier at the HV side. As I dialed up the voltage, the scale showed a reducing weight. I had weight-loss!

But after a few hours of reversing polarities and flipping the capacitor the other way around and taking plenty of notes, I found the cause. The weight-loss happened only when the feed wires were oriented with the top one feeding downward as shown in the diagram, but there was no weight change when the top wire was oriented horizontally. I’d seen high voltage wires moving before and here it was again, producing what looked like weight-loss on the scale.

But that’s only one of the interesting capacitors I’ve made. After the break we get into gravitators, polysulfide and even barium titanate.

Continue reading “Homemade Capacitors Of A Mad Scientist”

Lifting The Secret Of The Wooden Rings

Making beautiful things from epoxy and wood happens to be [Peter Brown’s] area of expertise. He was recently quested with reverse engineering the ring design of the Canadian manufacturer secret wood — a unique combination of splintered wood and epoxy — and achieved impressive results.

Continue reading “Lifting The Secret Of The Wooden Rings”

The Mystery Behind the Globs of Epoxy

When Sparkfun visited the factory that makes their multimeters and photographed a mysterious industrial process.

We all know that the little black globs on electronics has a semiconductor of some sort hiding beneath, but the process is one that’s not really explored much in the home shop.  The basic story being that, for various reasons , there is no cheaper way to get a chip on a board than to use the aptly named chip-on-board or COB process. Without the expense of encapsulating  the raw chunk of etched and plated silicon, the semiconductor retailer can sell the chip for pennies. It’s also a great way to accept delivery of custom silicon or place a grouping of chips closely together while maintaining a cheap, reliable, and low-profile package.

As SparkFun reveals, the story begins with a tray of silicon wafers. A person epoxies the wafer with some conductive glue to its place on the board. Surprisingly, alignment isn’t critical. The epoxy dries and then the circuit board is taken to a, “semi-automatic thermosonic wire bonding machine,” and slotted into a fixture at its base. The awesomely named machine needs the operator to find the center of the first two pads to be bonded with wire. Using this information it quickly bonds the pads on the silicon wafer to the  board — a process you’ll find satisfying in the clip below.

The final step is to place the familiar black blob of epoxy over the assembly and bake the board at the temperature the recipe in the datasheet demands. It’s a common manufacturing process that saves more money than coloring a multimeter anything other than yellow.

Continue reading “The Mystery Behind the Globs of Epoxy”