Maywa Denki’s Nonsense Machines

We just spent a few hours trying to figure out Japanese techno-performance-art-toy company [Maywa Denki]. As self-described “parallel-world electricians”, the small art collective turns out strange electro-mechanical instruments, creates bellows-powered “singing” sculptures, and puts on concerts/demos/lectures. And if you desperately need an extension cord in the shape of a fish skeleton, [Maywa Denki] has you covered. Writing about art is like dancing about economics, so first we’ll just drop a few of our favorites and let you decide.

On the serious art front are “nonsense machines” like SeaMoonsII and Wahha Go Go. The most iconic performance piece is probably the Pachi-Moku, a set of finger-snap-activated wooden gongs mounted on anime-style wings. And then there are “toys” like Mr. Knocky and the Otamatone, here demonstrated playing some DEVO.

There’s a lot going on here. The blue suits of the assembly-line worker, the back story as a small-electronics “company”, and the whole art-as-commodity routine is a put into contrast with the mad-inventor schtick make sense both as a reaction against conformist, corporatist postwar Japanese culture or as a postmodern hat-tip to the realities of the modern art scene. But mostly, what comes across is the feeling that [Novmichi Tosa], the “president” of [Maywa Denki] just loves to make crazy gizmos.

How else do you explain the gas-powered, chomping mouth-full-of-knives, Poodle’s Head?

Continue reading “Maywa Denki’s Nonsense Machines”

The 4-20 mA Current Loop

The I/O capabilities built into most microcontrollers make it easy to measure the analog world. Say you want to build a data logger for temperature. All you need to do is get some kind of sensor that has a linear voltage output that represents the temperature range you need to monitor — zero to five volts representing 0° to 100°C, perhaps. Hook the sensor up to and analog input, whip up a little code, and you’re done. Easy stuff.

Now put a twist on it: you need to mount the sensor far from the microcontroller. The longer your wires, the bigger the voltage drop will be, until eventually your five-volt swing representing a 100° range is more like a one-volt swing. Plus your long sensor leads will act like a nice antenna to pick up all kinds of noise that’ll make digging a usable voltage signal off the line all the harder.

Luckily, industrial process engineers figured out how to deal with these problems a long time ago by using current loops for sensing and control. The most common standard is the 4-mA-to-20-mA current loop, and here we’ll take a look at how it came to be, how it works, and how you can leverage this basic process control technique for your microcontroller projects.

Continue reading “The 4-20 mA Current Loop”

Chocolate Factory Simulation Makes Bars with LEGO

[Michael Brandl] got to visit the Milka chocolate factory in Bludenz, Austria and was inspired to build this simulation of the production process for the LEGO world 2017 event in Copenhagen.

The process begins with the empty mold riding on a double row of tank treads. Subsequent modules seem to fill the mold with LEGO ingredients, cool the bars, and remove them from the mold. The last two steps rock: [Michael] built a dispenser that drops a tiny cardboard box onto the line, sized to hold 3 LEGO bars. The box rolls to the end of the line and is picked up by a pneumatic gripper that picks up the box and places it on a pallet.

While more whimsical than the LEGO liquid handler we featured recently, there are a lot of interesting robotic techniques to be learned here. On the reverse angle video you can see more of what’s going on with the wiring of the various motors and sensors. There are six EV3 bricks scattered along the length of the assembly line. The bricks control 15 small motors, 2 large motors, 7 touch sensors, and 3 light sensors. [Michael] added some nice touches, like the combo of two color sensors, seen around 1:45 of the reverse angle video, possibly used to keep the factory operations synced.

Check out [Michael’s] Mindstorms sendup of [Anouk Wipprecht’s] drink bot dress. The LEGO version was built for Robotexotica. In addition, he has a lot of projects featured on his site.

Continue reading “Chocolate Factory Simulation Makes Bars with LEGO”

Desktop Factory Teaches PLC Programming

How to train young engineers in industrial automation is a thorny issue. Most factories have big things that can do a lot of damage and cost tons of money if the newbie causes a crash. Solution: shrink the factory down to desktop size and let them practice on that.

Luckily for [Vadim], there’s an off-the-shelf solution for miniaturizing factory automation: FischerTechnik industrial training models. The models have motors, conveyors, pneumatic cylinders, and sensors galore, but the controller is not exactly the industry standard programmable logic controller (PLC). [Vadim] set out to remedy this by building an interface between the FischerTechnik models and a Siemens PLC. He went through a couple of revisions of his board, including one using rivets from the sewing store to interface with the FischerTechnic connectors. Eventually, he settled on more robust connectors and came up with a board that lets students delve into PLC programming without killing anyone. The video below shows it going through its paces; we can only imagine where playing with these kits as a kid would have led us.

As great as [Vadim]’s system is for training engineers, we can also see it helpful in getting kids interested in a career in industrial automation. We recently covered a similar effort to show kids big science using LEGO Mindstorms. Both of these can help get STEM kids to see the wider world of technical careers and perhaps steer them into automation. After all, the people who make the robots are probably going to be the last ones obsoleted, right?

Continue reading “Desktop Factory Teaches PLC Programming”

The Art of Making A Nixie Tube

Three years ago we covered [Dalibor Farnby]’s adventures in making his own Nixie tubes. Back then it was just a hobby, a kind of exploration into the past. He didn’t stop, and it soon became his primary occupation. In this video he shows the striking process of making one of his Nixie tubes.

Each of his tubes get an astounding amount of love and attention. An evolution of the process he has been working on for five years now. The video starts with the cleaning process for the newly etched metal parts. Each one is washed and dried before being taken for storage inside a clean hood. The metal parts are carefully hand bent. Little ceramic pins are carefully glued and bonded. These are used to hold the numbers apart from each other. The assembly is spot welded together.

In a separate cut work begins on the glass. The first part to make is the bottom which holds the wire leads. These are joined and then annealed. Inspection is performed on a polariscope and a leak detector before they are set aside for assembly. Back to the workbench the leads are spot welded to the frame holding the numbers.

It continues with amazing attention to detail. So much effort goes into each step. In the end a very beautiful nixie tube sits on a test rack, working through enough cycles to be certified ready for sale. The numbers crisp, clear, and beautiful. Great work keeping this loved part of history alive in the modern age.

Continue reading “The Art of Making A Nixie Tube”

Industrial Automation in Action: Steam Controller Assembly

Right up front, we’ll cop to the inevitable “not a hack” comments on this one. This video of the Steam Controller assembly plant is just two minutes of pure robotics porn, plain and simple.

From injection molding of the case parts through assembly, testing and final palletizing of packaged controllers for the trip to distributors, Valve’s video is amazingly detailed and very well made. We’d wager that the crane shots and the shots following product down conveyors were done with a drone. A grin was had with the Aperture Labs logo on the SCARA arms in the assembly and testing work cell, and that inexplicable puff of “steam” from the ceiling behind the pallet in the final shot was a nice touch too. We also enjoyed the all-too-brief time-lapse segment at around 00:16 that shows the empty space in Buffalo Grove, Illinois being fitted out.

This may seem like a frivolous video, but think about it: if you’re a hardware hacker, isn’t this where you want to see your idea end up? Think of it as inspiration to get your widget into production. You’ll want to get there in stages, of course, so make sure you check out [Zach Fredin]’s 2015 Hackaday Superconference talk on pilot-scale production.

Continue reading “Industrial Automation in Action: Steam Controller Assembly”

Hackaday Prize Entry: A Civilization Starter Kit

Over the last few years, [Marcin] has been working on the building blocks of civilization. He’s busy creating the Global Village Construction Set, the fifty most useful machines ever created. Everything from bread ovens to combine harvesters is part of this Global Village Construction Set, and everything is open source, free for all to use and improve upon.

For this year’s Hackaday Prize, [Marcin] is working on an Open Source Bulldozer. The ability to create earthworks and move dirt around is actually one of humanity’s greatest achievements, and enables the creation of everything from foundations for homes to trans-oceanic canals.

This Open Source bulldozer is astonishingly modular, scaleable from a one-ton microtractor to a 13,000lb dozer, with attachment points for blades, drawbars, and everything else you can attach to a Bobcat earthmover. It’s 168 horses of opensource earthmoving capability, and a perfect addition to this year’s Hackaday Prize.

[Marcin] and his group Open Source Ecology posted a video of this micro bulldozer rolling around on their shop floor recently; you can check that out below. You can also see our coverage of the GLVCS from several years ago.

 

The 2015 Hackaday Prize is sponsored by:

Continue reading “Hackaday Prize Entry: A Civilization Starter Kit”