66% or better

Soap, candles, and toiletries from deer fat

Here’s a hack with more of a survivalist flair to it. [Ligament] and some friends used the fat from butchering a deer to make soap, candles, and toiletries.

It’s hunting season and [Ligament's] dad is processing the deer which he harvested. Wild game doesn’t have the amount of fat you’d find on a domesticated animal, but there is still a fair amount. The group cut off as much as they could before cutting up the rest of the meat. The trimmings are put in a pot with water and boiled until the fat starts to rise. It is ladled off and strained through some cheese cloth. The fat hardens overnight and can be picked up out of the container as a big disk. It is reheated and strained through a mesh coffee filter to achieve the final product. From there the fat was used as an ingredient in the recipes for candles, soap, and things like lip balm. For details on that heck out the comments for each image in the gallery linked above.

It’s a good thing to waste as little as possible. But this skill will be indispensable once the Zombie Apocalypse comes. You might also want to know how to chlorinate your own water.

[via Reddit]

Ever wonder where cool interactive museum exhibits come from?

[Victor's] girlfriend works at a museum and enlisted his expertise in designing an interactive detective game for kids visiting the museum. The vision was for the kids to discover phone numbers that they could call for clues. Originally he planned to display the clues on a character LCD, but obviously it’s much neater to hear the clues in the handset of the phone.

Quickly switching gears, [Victor] dropped the ATtiny2313 and started over with an Xmega chip — in fact, it was our recent Xmega post that inspired him to document his project. The microcontroller is responsible for a lot of goings-on. It scans the key matrix for inputs, simulates the DTMF touch tones, reads audio files from a FAT file system on an SD card, and plays them back over the hand set’s speaker. Since most of the hardware is already built into the phones, it was not hard to fit his add-ons inside the case. A simple audio amplifier circuit joins the microcontroller, which is patched into the rows and columns of the keyboard. Take a gander at the video after the break to see the device in action.

[Read more...]

FAT support for any microcontroller

[Rahul Sapre] sent us a guide to porting EFSL to any microcontroller (PDF). The Embedded Filesystems Library adds FAT support to C compiled microcontrollers. It is targeted at the AVR line of chips but can be adapted to any architecture that works with a C compiler. [Rahul's] guide will take you through the process of adapting the latest stable 0.2.8 version to new hardware by using a PIC uC as the working example. The non-stable development branch of EFSL is working toward multiple-platform support so consider lending a hand if this interests you.

iPod spinning vinyl

Here’s a quick demo that FAT’s [Theo Watson] put together. It uses the iPod’s accelerometer to measure how fast it’s spinning and plays the sound file accordingly. This only works on the iPod touch 2nd gen because of its curved case. He says scratching is coming next, but currently the app doesn’t know which direction it’s spinning since it’s measuring outward force. This project was done in response to [vanderlin]‘s AR scratching that used fiducials on records.

Recovering photos with PhotoRec

photorec

A coworker approached us today with a corrupted SD card. It was out of her digital camera, and when plugged in, it wasn’t recognized. This looked like the perfect opportunity to try out [Christophe Grenier]‘s PhotoRec. PhotoRec is designed to recover lost files from many different types of storage media. We used it from the command line on OSX, but it works on many different platforms.

It’s a fairly simple program to use. We plugged in the card and launched PhotoRec. We were prompted to select which volume we wanted to recover. We selected “Intel” as the partition table. PhotoRec didn’t find any partitions, so we opted to search the “Whole disk”. We kept the default filetypes. It then asked for filesystem type where we chose “Other” because flash is formatted FAT by default. We then chose a directory for the recovered files and started the process. PhotoRec scans the entire disk looking for known file headers. It uses these to find the lost image data. The 1GB card took approximately 15 minutes to scan and recovered all photos. This is really a great piece of free software, but hopefully you’ll never have to use it.