A Robot Arm With The Tender Grip Of An Octopus

If you’ve ever experimented with a robot gripper, you’ll know that while it is easy to make an analogue of the human ability to grip between thumb and forefinger, it is extremely difficult to capture the nuances of grip with the benefit of touch feedback to supply only just enough of the force required to grip and hold an object. You as a human can pick up a delicate eggshell without breaking it using the same hand you might use to pick up a baseball or a cricket ball, but making your robot do the same thing is something of an engineering challenge.

The robot gripper is something that has exercised the minds of the folks at Festo, and the solution they have arrived at is as beautiful as it is novel. They have produced a gripper based upon the action of an octopus tentacle,  though unlike the muscle of the real thing they’ve created a silicone tube which bends inwards when inflated. Its inner surface is covered with octopus-like suckers, some of which can be activated by a vacuum. The result is a very capable and versatile gripper which due to its soft construction is ideal for use in environments in which robots and humans interact.

They’ve put up a slick video showing the device in action, which we’ve put below the break. Tasks such as gripping a rolled-up magazine or a plastic bottle that would tax more conventional grippers are performed faultlessly.

Continue reading “A Robot Arm With The Tender Grip Of An Octopus”

Robot Ants Wear Circuitry as Exoskeleton

[FESTO] keeps coming up with new tricks that make us both envious and inspired. Take their bionicANTs for example. Watching a group of them cooperate to move objects around looks so real that you’re instantly reminded of the pests crawling across your floor, but looking at them up close they’re a treasure trove of ideas for your next robot project.

Ant exoskeleton as circuit board
Ant exoskeleton as circuit board

The exoskeleton is 3D printed but they then use the outer surface of that exoskeleton as a circuit board for much of the circuitry. The wiring is “painted on” using a 3D MID (Molded Interconnect Device) process. While FESTO didn’t give specifics about their process, a little research shows that 3D MID involves the 3D printed object being made of a special non-conductive metal material, a laser then “drawing” the traces in the material, and then dipping the object in various baths to apply copper, nickel and gold layers. We mortal hackers may not have the equipment for doing this ourselves in our workshops but seeing the beautiful result should be inspiration enough to get creative with our copper tape on the outer surfaces of our 3D printed, CNC’d, or hand-carved parts.

We also like how they took a the mouse sensor from under a regular computer mouse and attached it to the ant’s underside, pointing down for precision dead reckoning. For the legs they used three piezo bending transducers. However, these give a deflection of only 1.5mm in both directions, not enough for walking. They increase this to over 10mm with the addition of a plastic hinge, another idea to keep in mind when building that next tiny robot. And there are more ideas to be taken advantage of in their ants, which you can see being built in the video below.

Continue reading “Robot Ants Wear Circuitry as Exoskeleton”

3D Cocooner (3D Lattice Printer)

Sometimes it feels like we haven’t yet tapped into all the possibilities of additive manufacturing. Festo, a company that loves to try innovative things (and not always bring them to market), just came up with something called the 3D Cocooner — essentially, a rostock style 3D printer on its side, with a UV cure feature to allow it to build up skeletal structures and lattice style shapes.

Similar to the MX3D-Metal 3D printer (which is currently on a mission to build a bridge end-to-end — by itself), this 3D printer specializes in printing structures as opposed to the more traditional layer approach. It’s called the 3D Cocooner as it is a bionic technology platform designed to “spin” complex lattices, very similar to naturally occurring structures.

The cool thing is, it’s not actually using plastic filament like most printers — it’s actually printing using string! The string is covered with a special UV resin which is then hardened into place as soon as it is expelled from the print head — making this more like a giant robot spider than a 3D printer.

Continue reading “3D Cocooner (3D Lattice Printer)”

Festo Creates Bionic Kangaroo; Steve Austin Unimpressed

 

festo-roo

[Dr. Wilfried Stoll] and a team at Festo have created an incredible robot kangaroo. Every few years the research teams at Festo release an amazing animal inspired robot. We last covered their smartbird. This year, they’ve created BionicKangaroo (pdf link). While The Six Million Dollar Man might suggest otherwise, Bionics is use of biological systems in engineering design. In this case, Festo’s engineers spent two years studying the jumping behavior of kangaroos as they perfected their creation.

Kangaroos have some amazing evolutionary adaptations for jumping. Their powerful Achilles tendon stores energy upon landing. This allows the kangaroo to increase its speed with each successive jump. The kangaroo’s tail is essential for balancing the animal as it leaps through the air. The Festo team used a thick rubber band to replicate the action of the tendons. The tail is controlled by electric servomotors.

Festo is known for their pneumatic components, so it’s no surprise that the kangaroo’s legs are driven by pneumatic cylinders. Pneumatics need an air supply though, so the team created two versions of the kangaroo. The first uses an on-board air compressor. The second uses a high-pressure storage tank to drive the kangaroo’s legs. An off the shelf Programmable Logic Controller (PLC) acts as BionicKangaroo’s brain. The PLC monitors balance while controlling the pneumatic leg cylinders and electric tail motors. Unfortunately, BionicKangaroo isn’t completely autonomous. The Thalmic Labs Myo makes a cameo appearance in the video. The Kangaroo’s human controller commands the robot with simple arm movements.

While the BionicKangaroo is graceful in its jumps, it still needs a bit of help when turning and taking simple steps. Thankfully we don’t think it will be boxing anytime soon.

Continue reading “Festo Creates Bionic Kangaroo; Steve Austin Unimpressed”

humanoid Robot Kinects with its enviroment

[Malte Ahlers] from Germany, After having completed a PhD in neurobiology, decided to build a human sized humanoid robot torso. [Malte] has an interest in robotics and wanted to  show case some of his skills.The project is still in its early development but as you will see in the video he has achieved a nice build so far.

A1 consists of a Human sized torso with two arms, each with five (or six, including the gripper) axes of rotation, which have been based on the robolink joints from German company igus.de. The joints are tendon driven by stepper motors with a planetary gear head attached. Using an experimental controller which he has built, [Malte] can monitor the position of the axis by monitoring the encoders embedded in the joints.

The A1 torso features a head with two degrees of freedom, which is equipped with a Microsoft Kinect sensor and two Logitech QuickCam Pro 9000 cameras. With this functionality the head can spatially ”see” and ”hear”. The head also has speakers for voice output, which can be accompanied by an animated gesture on the LCD screen lip movements for example. The hands feature a simple gripping tool based on FESTO FinGripper finger to allow the picking up of misc items.

Flying penguins are awesome

Festo, people who brought us the Manta Ray blimp are back with giant flying penguins. Actually, there’s lots of cool stuff in this video. The flying penguins are nice, but the swimming versions are amazingly believable. They need to sell these as pool toys. There’s also an interactive wall sculpture and a dangling grabby hand that apparently solves the age old riddle; “How many weird dangly grabby things does it take to randomly place several light bulbs in different sockets?”. The answer is, one.  Just like last time, they’re sharing some details in PDF form for both the air penguins and the aqua penguins.

Flying manta ray blimp

German engineering firm Festo has created this flying manta ray. Dubbed the Air_ray, it’s a balloon made of an aluminum-vaporised “PET foil”. Inflated with helium, the Air_ray’s propulsion system is a flapping wing drive. Each wing has alternating pressure and tension flanks that are attached to an internal set of ribs. The flanks are connected to a remotely controlled servo motor. When pressure is applied to either of the flanks, the wing bends in the opposite direction. By alternating pressure on the flanks, the wings beat. The servos are powered by two 8V LiPo accumulator cells.

The total weight of the Air_ray including the balloon, propulsion system, power supply, and helium is 1.6Kg. Festo has more specs in this PDF.

[via Neatorama]