Stronger 3D Printed Parts

When [hobbyman] wanted some 3D printed parts to attach a bag to his bike, he was worried that the parts would not be strong enough to hold when the bag was full. He decided to find a way to reinforce the part with fiberglass and epoxy. His first model had holes and grooves to be filled in with epoxy.

However, after working with the part for a bit, he decided to take a different approach. Instead of making the part nearly solid plastic with space for the epoxy, he instead created the part as a shell and then filled it with fibers and epoxy. After it all cured, a little sanding started removing some of the plastic shell and what was left was mostly a cast fiberglass part (although some of the plastic was left on).

Continue reading “Stronger 3D Printed Parts”

Earth Day: Electric Vehicles

Electric vehicles are the wave of the future, whether it’s from sucking too much oil out of the ground, or because of improved battery technology. Most internal combustion engines are unsustainable, and if you’re thinking about the environment – or working on an entry for The Hackaday Prize – an electric vehicle is the way to go.
Here are a few electric vehicle projects that are competing in The Hackaday Prize that show off the possibilities for the electric vehicles of the future.

An Electric Ninja

Motorcycles are extremely efficient already, but if you want a torquey ride with a lot of acceleration, electric is the way to go. [ErikL] is hard at work transforming a 2005 Ninja 250R into an electric vehicle, both to get away from gas-sipping engines and as a really, really cool ride. Interestingly, the battery technology in this bike isn’t that advanced – it’s a lead acid battery, basically, that reduces the complexity of the build.

And They Have Molds To Make Another

Motorcycles aren’t for everybody, but neither are normal, everyday, electronic conversion cars. [MW Motors] is building a car from scratch. The body, the chassis, and the power train are all hand built.

The amazing part of this build is how they created the body. It’s a fiberglass mold that was pulled off of a model carved out of a huge block of foam. There’s a lot of composite work in here, and a lot of work had to happen before digging into the foam; you actually need to choose your accessories, lights, and other bits and bobs before designing the body panels.

While the suspension and a lot of the mechanical parts were taken from a Mazda Miata, the power and drive system are completely custom. Most of the chassis is filled with LiFeMnPO4 batteries, powering four hub motors in each wheel. It’s going to be an amazing car.

Custom, 3D Printed Electric Motors

If you’re designing an electric car, the biggest decision you’re going to make is what motor you’re going to use. This is a simple process: open up a few catalogs and see what manufacturers are offering. There’s another option: building your own motor. [Solenoid] is working on a piece of software that will calculate the specifications of a motor given specific dimensions. It will also generate files for a 3D printed motor given the desired specs. Yes, you’ll still need to wind a few miles of copper onto these parts, but it’s the beginning of completely custom electronic motors.

3D Printed Surfboard

You whippersnappers these days with your 3D printers! Back in our day, we had to labor over a blank for hours, getting all sweaty and covered in foam dust. And it still wouldn’t come out symmetric. Shaping a surfboard used to be an art, and now you’re just downloading software and slinging STLs.

Joking aside, [Jody] made an incredible surfboard (yes, actual human-sized surfboard) out of just over 1 kilometer of ABS filament, clocking 164 hours of printing time along the way. That’s a serious stress test, and of course, his 3D printer broke down along the way. Then all the segments had to be glued together.

But the printing was the easy part; there’s also fiberglassing and sanding. And even though he made multiple mock-ups, nothing ever goes the same on opening night as it did in the dress rehearsal. But [Jody] persevered and wrote up his trials and tribulations, and you should give it a look if you’re thinking of doing anything large or in combination with fiberglass.

Even the fins are 3D printed and the results look amazing! We can’t wait for the ride report.


Hackaday Links: July 6, 2014


Power for your breadboards. It’s a USB connector, a 3.3V voltage regulator, and a few pins that plug into the rails of a breadboard.

“Have you seen those ‘Portable battery chargers for smartphones?’ Well the idea of the device is based on it , but the difference here is the internet part.” That’s a direct quote from this Indiegogo campaign. It’s funny because I don’t remember losing my damn mind recently. Wait. It’s $200. Yep. Yep. Definitely lost my mind there.

Putting the Internet on a USB stick not weird enough? Hair Highways. Yep, human hair. It’s just embedding human hair into resin, cutting everything up into plates, and assembling these plates into decorative objects. As a structural material, it’s probably only as strong as the resin itself, but with enough hair set in layers perpendicular to each other, it would be the same idea as fiberglass. Only made out of hair.

Tesla is building a $30,000 car and Harley is building an electric motorcycle. The marketing line for the bike will probably be something like, “living life on your own terms, 50 miles at a time”.

PixelClock? It’s a 64×64 array of red LEDs built to be a clock, and low-resolution display. It looks blindingly bright in the video, something that’s hard to do with red LEDs.

Quoth the Raven: hack some more


There are people who buy a cheap sack of candy and dutifully answer the door on Halloween. Then there are people like [Peter] who spend the whole year planning for the next year’s Hollywood-style front yard theatrics.

He added an animatronic raven to his show a few years back. It has been wildly popular and it’s not hard to see why. The bird is well engineered, well built, and the performance is very realistic. [Peter], who is an FX supervisor in the film industry, has posted a build log that takes us through step by step. This creepy performer can move its head up and down, side-to-side, and even rotate at the neck. This all happens while the beak synchronizes with talking. We marvel at the precision machining that was done to make the frame facilitate movement.

The body itself is made of fiberglass covered with feathers. [Peter] covered the completed mechanics with clay in order to sculpt the final body shape. This was used as the mold by covering it with fiberglass release and then fiberglass fabric. This process produced a very light weight and accurate shell with a minimum of effort; something we’ll keep in mind for future projects.

Take a look at a bit of video after the break. You can see the whole show from past years over at [Peter’s] site. We’ll be doing a couple of follow-ups covering his animatronic skeleton (the raven’s partner in crime) as well as the interface he uses to control and sync the voices to stay tuned! Continue reading “Quoth the Raven: hack some more”