18-Channel PWM Aquarium Lights Provide Habitat-Like Life for Fish

Aquarium with variable LEDs

Whether you want to keep your fish happy or just need a good light show, this aquarium light fits the bill. It is the second iteration, but [William] calls it v1. That’s because v0 — which used a few loops of LED strips — never really met his requirements.

This build uses just six LEDs, each a 30 Watt RGB monster! To source about 350 mA for each, and to control brightness with 18-channels of pulse width modulation, he had to plan very carefully. This meant a proper aluminum project box and a beefy, fan-cooled power supply.

The driver board is his own design, and he etched a huge board to hold all of the components. Everything is driven by an Arduino Mega, which has 16 hardware PWM channels; two short of what he needed. Because of this he had to spend a bit of time figuring out how best to bit-bang the signals. But he’s putting them to good use, with fish-pleasing modes like “sunset” or the “passing rainbow” pattern which is shown in the image above.

If you need something a little less traditional why not house your fish in a computer case, complete with LED marquee for displaying data.

Yo Fish, We Pimped Your Tank

fishie

[Studio Diip] a machine vision company based in The Netherlands has created fish on wheels, a robotic car controlled by a goldfish. The idea of giving fish mobility on land is nothing new, but this definitely is a novel implementation. A Logitech 9X0 series camera captures overhead images of the fish tank. The images are then fed into a BeagleBoard XM, where they are processed. The image is thresholded, then a centroid of the fish-blob is determined. With the current and previous blob locations known, the BeagleBoard can determine the fish’s swim direction. It then and commands the chassis to drive accordingly.

The system appears to work pretty well on the video, however we’re not sure how much of the input is due to the fish swimming, and how much is due to the water sloshing and pushing the fish around. We definitely like the chrome rims and knobby tires on the fishes’ pimped out ride.  This could become a trend. Just make sure no animals or humans are hurt, and send your animal powered hacks to our tip line!

[Read more...]

Automated Aquarium is Kitchen-Sinky

fishtankAutomation

People have been converting their old Power Macs and Mac G5s into fish tanks for a few years now, but [Hayden's] Internet-enabled tank is probably the most awesome ever crammed into an aquarium along with the water and the fish—and we’ve seen some fascinating builds this summer. After gutting the G5 and covering the basic acrylic work, [Hayden] started piling on the electronics: a webcam, timed LED lighting, an LCD for status readouts, filter and bubble control via a servo, an ultrasonic sensor to measure water levels, thermometer, scrolling matrix display, an automatic feeding mechanism, and more. He even snuck in the G5’s old mainboard solely for a cool backdrop.

The build uses both a Raspberry Pi and an Arduino Mega, which sit underneath the tank at the base. The Pi provides a web interface written in PHP and jQuery, which presents you with the tank’s status and allows changes to some settings. Nearly every component received some form of modification. [Hayden] stripped the webcam of its case and replaced the enclosure with a piece of acrylic and a mountain of silicone, making it both waterproof and slim enough to fit in the appropriate spot. Though he decided to stick with an Amazon-bought Eheim fish feeder, he disabled the unit’s autofeed timer and tapped in to the manual “feed” button to integrate it into his own system.

It’d take half of the front page to explain the rest of this thing. We’ve decided to let the aquarium tell you the rest of its features in the video below. Yeah…it can talk.

[Read more...]

A pair of automatic fish feeders

a-pair-of-automatic-fish-feeders

Sometime the hacking topics come in waves. For instance, we were tipped off about this pair of automatic fish feeders just an hour apart from each other. Maybe it’s that time of year when people are about to go on Holiday and want to make sure their marine pets don’t go hungry?

The feeder on the left is a true hack. It’s built from a pair of servos and a pill bottle. An ATtiny85 drives the motors. One is mounted to the other, allowing the cap which catches and distributes the food to move along two axes. When it rotates into place under the pill bottle it bumps against a stick to open a flapper releasing more food.

On the right is a feeder that precisely doses the food. That’s because it includes a separate chamber for each feed. A worm gear drives the hopper, with screw heads pressing against a leaf switch for position feedback. This one is well designed and built to last.

Should we make games for fish?

I have often sat, gazing at my aquarium, wondering what life is like for those critters I keep captive. Are they bored and yearning to be set free? Are they content with their gluttonous lifestyle and constant pampering?

This is a question that is often raised with animals of a higher order, like pachyderm in the zoo, or chimpanzee. Those are easier to personify and to debate, but those are also, not often in our homes.

I keep my aquariums overgrown with actual live plant life. I have a flourishing ecosystem of natural plant filtration and invertebrates that I truly enjoy watching as they pick at the debris and bustle throughout the day. I test my water regularly to make sure it is optimal for the health of all involved. But my fish, well, as I said, I wonder about them.

[Read more...]

Urban farming uses aquaponics to make farmland where there is none

[Eric Maundu] is farming in Oakland. There are no open fields in this concrete jungle, and even if there were the soil in his part of town is contaminated and not a suitable place in which to grow food. But he’s not using farming methods of old. In fact farmers of a century ago wouldn’t recognize anything he’s doing. His technique uses fish, circulated water, and gravel to grow vegetables in whatever space he can find; a farming method called aquaponics.

The video after the break gives an excellent look at his farm. The two main parts of the system are a large water trough where fish live, and a raised bed of gravel where the fish waste in the water is filtered out and composted by bacteria to becomes food for the vegetables. More parts can be added into the mix. For instance, once the water has been filtered by the stone bed it can be gravity fed into another vessel which is being used to grow lettuce suspended by floating foam board. But the water always ends up back in the fish trough where it can be reused. This ends up saving anywhere from 90-98% of the water used in normal farming.

But [Eric] is also interested in adding some automation. About seven minutes into the video we get a look at the control systems he’s working on with the help of Arduino and other hardware.

[Read more...]

Robot fish detect pollutants

If you happen to visit the Spanish port of Gijon, you may notice some giant yellow robotic fish swimming around. These 5 foot long swimmers are part of a proposed sensor network to detect pollutants in the water.  Equipped with an array of sensors, the fish can test for general water quality, or swap out the sensors for specific testing. They communicate with each other to keep from straying too far from the rest of the network and the base charging station.

The fish was designed by the Shoal Consortium, a European commission funded program that draws from intelligent minds in universities all over europe. While the fish cost over $35,000 right now, mass production should reduce that cost considerably.

You can see them swimming around in the BBC video at the link.

Follow

Get every new post delivered to your Inbox.

Join 92,417 other followers