Hackaday Links: December 21, 2014

Most of the incredible flight simulator enthusiasts with 737 cockpits in their garage are from the US. What happens when they’re from Slovenia? They built an A320 cockpit. The majority of the build comes from an old Cyprus Airways aircraft, with most of the work being wiring up the switches, lights, and figuring out how to display the simulated world out of the cockpit.

Google Cardboard is the $4 answer to the Oculus Rift – a cardboard box and smartphone you strap to your head. [Frooxius] missed being able to interact with objects in these 3D virtual worlds, so he came up with this thing. He adapted a symbol tracking library for AR, and is now able to hold an object in his hands while looking at a virtual object in 3D.

Heat your house with candles! Yes, it’s the latest Indiegogo campaign that can be debunked with 7th grade math. This “igloo for candles” will heat a room up by 2 or 3 degrees, or a little bit less than a person with an average metabolism will.

Last week, we saw a post that gave the Samsung NX300 the ability to lock the pictures taken by the camera with public key cryptography. [g3gg0] wrote in to tell us he did the same thing with a Canon EOS camera.

The guys at Flite Test put up a video that should be handy for RC enthusiasts and BattleBot contenders alike. They’re tricking out transmitters, putting push buttons where toggle switches should go, on/off switches where pots should go, and generally making a transmitter more useful. It’s also a useful repair guide.

[Frank Zhao] made a mineral oil aquarium and put a computer in it. i7, GTX 970, 16GB RAM, and a 480GB SSD. It’s a little bigger than most of the other aquarium computers we’ve seen thanks to the microATX mobo, and of course there are NeoPixels and a bubbly treasure chest.

[Tom Sachs] Builds His Own Space Program


Born in the mid 60’s, [Tom Sachs] has always been fascinated with space, especially the Apollo program. Just like every kid of his generation, [Tom] imagined himself in Neil Armstrong’s and Buzz Aldrin’s boots, gazing over the lunar surface. He never gave up that dream, and years later as a successful modern artist, he built his own space program.

[Tom Sachs] is a master of bricolage . Taken from the French word for tinkering, Wikipedia defines bricolage as “… the construction or creation of a work from a diverse range of things that happen to be available, or a work created by such a process.”  The term could also describe the junkbox procurement methods we use on many of our own projects.

sachs-lunar-landerBoth [Tom’s] 2007 lunar program and his 2012 Mars program featured his astonishing lunar lander. Built from plywood, found items, and junk, the lander literally made us do a double take the first time we saw it. The attention to detail is incredible. At first glance one could mistake this for a simulator built by NASA themselves. After a few seconds the custom touches start to jump out, such as a “Thank You” garbage door from a fast food restaurant, or a bar stocked with tequila and vodka. The lander’s tools are not just for show either, as the gallery opens with a simulated space mission, which could best be described as a mix of art, improv, and an epic game of make-believe for adults.

[Tom’s] installations also include mission control, which in his Mars piece consisted of a dizzying array of screens, controls and an 80’s boombox. Dressed in the white shirt, thin tie, and horn rimmed glasses we’ve come to associate with NASA engineers of the 60’s, this is where [Tom] works. He truly is the engineer of this mission.

Editor’s Note [Tom] and the entire hacker community at large have a chance to go to space by entering The Hackaday Prize!

Continue reading “[Tom Sachs] Builds His Own Space Program”

Custom Controllers For Kerbal Space Program

kerbalKerbal Space Program is already a runaway indie video game hit, and if you ask some people, they’ll tell you it is the way to learn all about orbital dynamics, how spaceships actually fly, the challenges of getting to the mün. The controls in KSP are primarily keyboard and mouse, something that really breaks the immersion for a space flight simulator. We’ve seen a few before, but now custom controllers well suited for a Kerbal command pod can be made at home, with all the blinkey LEDs, gauges, and buttons you could want.

[Freshmeat] over on the KSP forums began his space adventures with a keyboard but found the fine control lacking. An old Logitech Dual Shock controller offered better control, but this gamepad doesn’t come with a throttle, and USB throttles for flight sims are expensive. He found a neat plugin for KSP made for interfacing an Arduino, and with a few modifications, turned his controller into a control panel, complete with sliders, pots, gauges, and all the other goodies a proper command pod should have.

[Freshmeat]’s work is not the only custom Kerbal controller. There’s a whole thread of them, with implementations that would look great in everything from a modern spaceplane to kerbalkind’s first steps into the milky abyss of space. There’s even one over on the Hackaday projects site, ready to fly Bill, Bob, and Jeb to the mün or a fiery explosion. Either one works.

Thanks [drago] for the tip.

Multijoy_Retro Connects Your ‘Wayback’ to your ‘Machine’


Moore’s law is the observation that, over the history of computing hardware, the number of transistors on integrated circuits doubles approximately every two years. This rapid advancement is certainly great for computing power and the advent of better technology but it does have one drawback; otherwise great working hardware becomes outdated and unusable.  [Dave] likes his flight simulators and his old flight sim equipment. The only problem is that his new-fangled computer doesn’t have DA15 or DE9 inputs to interface with his controllers. Not being one to let something like this get him down, [Dave] set out to build his own microcontroller-based interface module. He calls it the Multijoy_Retro.

Continue reading “Multijoy_Retro Connects Your ‘Wayback’ to your ‘Machine’”

Pneumatic Powered Flight Simulator


Remember that feature a few days ago about the Cessna 172 flight simulator? It was pretty awesome. But do you know what it was missing? It was missing this. A fully motion-controlled, pneumatically driven, flight simulator cockpit.

[Dominick Lee] is a high school senior, and he was able to whip together this awesome flight simulator made out of PVC pipe, pneumatic cylinders, an Arduino, a projector, and a gaming PC — in just a few months time! He calls it the LifeBeam Flight Simulator, and he’s released all the information required to make one yourself.

It’s most similar to a Stewart platform simulator, which features 2 degrees of freedom, but instead of 6 actuators, this one runs on only two pneumatic cylinders. It works by exporting the roll and pitch (X and Y) data from the game, and then parsing it to an Arduino which controls the pneumatic valve amplifier, powering the cylinders.

It’s an amazing project, and it sounds like [Dominick] had an awesome physics professor, [Dr. Bert Pinsky], to help mentor him. Don’t forget to check out the demonstration video!

Continue reading “Pneumatic Powered Flight Simulator”

Building a Cessna 172 Simulator


As anyone who has downloaded Microsoft Flight Simulator X or X-Plane knows, piloting an aircraft using a keyboard and mouse just doesn’t work. If you’re going to get in to the world of flight simulators, it’s best to go all-in. [Stevenarango] knows this and built a great Cessna 172 cockpit for his personal use.

All the gauges, instrument panels, and controls are from Saitek, one of the best manufacturers of home/hobbyist flight controls. The instruments were mounted on a 5mm piece of PVC, which is mounted on a C172 cockpit-sized wooden frame. All the instruments, from the throttle, pedals, yoke, trim wheel, individual LCD steam gauges, and multi panel are driven by USB.

As for the actual simulation, [Steven] is using a fairly powerful computer running Flight Simulator X with dual monitors – one for the glass cockpit and another for the windscreen. It’s not quite the same scale as building a 737 in your garage, but it’s more than sufficient for an awesome flight simulator experience at home.

Stewart Platform reinvents the wheel so you don’t have to


[Dan Royer] has noticed that most university projects involving a Stewart platform spend more time building a platform than on the project itself. He hopes to build a standard platform universities can use as the basis for other projects.

Stewart platforms are six degree of freedom platforms often seen hefting flight simulators or telescopes. The layout of the actuators allows movements in X,Y,and Z as well as pitch, roll and yaw. While large platforms often use hydraulic systems to accelerate heavy loads quickly. [Dan] is looking at a smaller scale system. His platform is built of laser cut wood and uses six steppers to control motion.

One of the harder parts in designing a platform such as this is creating a mechanical system that is strong, precise, and smooth. With so many linkages, it’s easy to see how binding joints could bring the entire thing to a grinding halt. [Dan] is currently using RC helicopter ball joints, but he’s on the lookout for something even smoother.

Continue reading “Stewart Platform reinvents the wheel so you don’t have to”