Building a Quadcopter with a CNC Mill and a 3D Printer

Quadcopter

Quadcopters are a ton of fun to play with, and even more fun to build. [Vegard] wrote in to tell us about his amazing custom DIY quadcopter frame that uses a commercial flight control system.

Building a quadcopter is the perfect project to embark upon if you want to test out your new CNC mill and 3D printer. The mechanical systems are fairly simple, yet result in something unbelievably rewarding. With a total build time of 30 hours (including Sketchup modeling), the project is very manageable for weekend hackers. [Vegard's] post includes his build log as well as some hard learned lessons. There are also tons of pictures of the build. Be sure to read to read the end of the post, [Vegard] discusses why to “never trust a quadcopter” and other very useful information. See it in action after the break.

While the project was a great success, it sadly only had about 25 hours of flight-time before a fatal bird-strike resulted in quite a bit of damage. Have any of your quadcopters had a tragic run-in with another flying object? Let us know in the comments.

[Read more...]

Japanese Micro Planes

Some very well engineered micro planes(translated) have been buzzing around the net. The goal here is ultra light weight. These suped-up paper planes have a remarkable target weight of around 10 grams (translated). The lighter the micro plane is the slower and more maneuverable it will be leading to some pretty interesting and scary applications. For controls it looks like many of the planes are using infrared receivers/transmitters (much like you would find in a TV remote hint hint). Getting the lightest plane possible has forced the designers to come up with some pretty ingenious tricks. For example, instead of using packaged servos they use a coil of wire wrapped around a rare earth magnet to control the flaps. You can see these home made “servos” in action after the break.

Some have taken a more classic approach and used rubber band power instead of a li-po/motor combo.

[via Make]

[Read more...]

Four generations of motion simulators

We like a good flight simulator but often find the available control schemes lacking. [Roland] not only builds his own controls, but creates full cockpits that add physical motion to the mix. He completed his third generation cockpit last year.  It’s pictured above as well as in video after the break. That design uses a belt system to move the tricked out cockpit.

Now he’s started work on prototypes for generation IV. This time he’s using three Sarrus linkages to replace the belt system.  We saw these linkages yesterday in an extruder prototype and if they can handle the load they should work well for this application. Video of the prototype is embedded after the break but be warned, the lewd thrusting motions are not for the faint-of-heart. [Read more...]

Single-wing flight based on maple seed aerodynamics

one-winged-flight

The Samara Micro-Air-Vehicle is a product of over three years of work at the University of Maryland’s Aerospace Engineering Autonomous Vehicle Laboratory. The Samara is an applicant in the DARPA nano air vehicle program. Unlike the ornithopter we saw in July, this vehicle uses only one wing for flight. A small propeller on a rod mounted perpendicular to the wing provides rotation. The pitch of the wing is changed to climb, descend, or hover.

You can see a video of the flight tests after the break. The sound the Samara makes reminds us of classic alien invasion movies and the use of Verdi’s Requiem for the background music during flight tests (2:43) seems quite fitting. At about 5:45 there is some on board video footage that is just a blur of the room spinning by. This would be much more useful if a few frames per second were snapped at exactly the same point in the vehicles rotation.

[Read more...]

Autonomous helicopter learns autorotation


Stanford’s autonomous helicopter group has made some impressive advancements in the field of autonomous helicopter control, including inverted hovering and performing aerobatic stunts. The group uses reinforcement learning to teach its control system various maneuvers and has been very successful in doing so. One of their latest achievements was teaching the bot the emergency landing technique autorotation. Autorotation is used when a helicopter’s engine fails or is disengaged and works by changing the collective pitch to use the airflow from descent to rotate the blades. The group has more flight demonstrations on their YouTube channel.

[via BotJunkie]