Vintage Vinyl Laser-Etched on a Tortilla

[UpgradeTech] had a proof-of-concept itch they needed to scratch: making a playable record out of a tortilla using a laser cutter. The idea was spawned from the goofy “tortilla vinyl” YouTube video.

Uncooked flour tortillas were used. Corn tortillas were too lumpy while cooked tortillas shredded on the record player. To get the recording onto the tortilla, Audacity was used to modify a stereo WAV file. Using the RIAA equalization standard is a great choice here as it was originally adopted to prevent excess wear and tear on record grooves as the needle passed through. A Python script generated the files for the laser cutter, creating a text file with the sound data which was then processed into a vector PDF of the grooves. For each record it takes 30 minutes for the laser cutter to turn a simple flour tortilla into the musical variety.

Each tortilla can play 30-40 seconds of music at 45 or 78 RPM, but they start to warp once they dry out. Time to build a humidor around the record player! There is background noise that can make certain songs harder to hear, but there is unarguably audible music. There is plenty of room for optimizing the sound file, grooves, and cutting. We hope this project inspires others to make their own musical tortilla. Playing with your food has taken on a whole new meaning!

Continue reading “Vintage Vinyl Laser-Etched on a Tortilla”

These Builds Grow Food In Cities

You’ve probably heard the term food desert: locations where it’s difficult to get access to fresh fruits and vegetables. One way to help alleviate the problem is to promote urban farming. This week we challenged you to think of ideas that would make growing fresh food in urban areas easier and more enticing. Let’s take a look:

The IKEA Model:

IMG_0429One concept that was popular with this week’s theme was ready-to assemble gardening kits. From personal experience I think this is of huge importance. Once upon a time in a crappy apartment far, far away my wife and I set out to grow tomatoes on the balcony. The plants flourished and bore fruit which the squirrel population of the neighborhood immediately stole while still green. I built this produce cage the following year and we were able to enjoy the fruit of our labors. But not everyone can whip up such a solution without help.

Aker is a set of designs for a modular farming system. The idea is to find a hackerspace or other group with a CNC router and use the plans to cut out different farming “furniture” like a chicken coop, tiered gardening container rack, a wall garden, compost system, and a bee hive. The coop design would serve as caged garden if need be.

Along the same vein is [Eric’s] Urban Gardening IKEA Style. He’s excited to pass along the knowledge he has accumulated over the years. Part of this is a simple to build gardening table that holds rectangular potting containers.

Modular Greenhouse:

modular-hyrdoponics

Next up is the concept of modular farming. We like this because the gardens can be scaled based on available space.

Seen here is the Modular Vertical Farming mockup. The system specs different size and features for each pod based on what is being grown inside. Also included in the concept is a monitoring and feedback system which will help each urban farmer achieve success.

Combining modularity with water conservation is the Hydropod project. It’s not purely hydroponics, but the vertical cylinders are designed to pump water up to the top and reclaim it as it exits the bottom.

We don’t want to move on without a brief mention of the HydroPI Garduino. Kudos on maximum-buzz-wordiness in the title. We’re into the concept of including common tools to help monitor and control this hydroponic garden. But for city-dwellers who frequently move, the portable emphasis is valuable.

Uber-Conservation:

capture-condensate-from-acThis one is quite an interesting thought. If you live in a climate where air conditioning is used constantly, chances are pretty good that the humidity the condenser coil removes from the air is going right down the drain. The Condesnate Capture for Micro-Irrigation project wants to change that by sequestering the water for the next urban garden irrigation cycle. We’d love to see some solid data on average condensate output per square foot of building.

This Week’s Winners

time-for-the-prize-week-4-prizes

First place this week goes to Aker and will receive an RGB Shades Kit.

Second place this week goes to Modular Vertical Farming and will receive a GoodFET42 JTAG programmer and debugger.

Third place this week goes to Condensate Capture for Micro-Irrigation and will receive a Hackaday CRT Android tee.

Next Week’s Theme

We’re moving to a new set of weekly giveaways that are more numerous and valuable. This week we’ll be giving away thirty (30) prizes. Each will be a $50 code to spin some PCBs. More details on that in our next Time for the Prize post. For now make sure you submit an official entry. Start your project on Hackaday.io and use the “Submit-To” button below the picture on the left to submit it for the 2015 Hackaday Prize.


The 2015 Hackaday Prize is sponsored by:

Time for the Prize: Urban Gardening and Living off the Land

What kind of impact does growing your own food have on the world’s resources? Jump aboard for a little thought exercise on this week’s Time for the Prize challenge to brainstorm urban gardening and living off the land.

We figure for any kind of meaningful impact there would need to be wide-spread adoption of people growing at least some of their own food locally. This means making the process fun and easy, a challenge well suited for 2015 Hackaday Prize entries. Write down your ideas as a project on Hackaday.io, tag it 2015HackadayPrize and you could win this week’s prizes which are listed below.

Space, Information, and Automation

urban-gardening-thumbTo get rolling, we started thinking about three things that are needed to convince people to grow their own food or live off the land.

First up, you need space to grow. This has been the subject of a number of urban farming hacks like the one seen here which uses downspouts as a vertical garden apparatus. Openings are cut into the front of the tubes, which are each hanging from a PVC rack. Each opening hosts a plant, holding them where they have access to sunlight, while taking up very little space on a sunny balcony or sidewalk.

The concept also includes a bit of automation. It’s a hydroponic garden and simple sensors and controllers handle the water circulation while providing feedback for the gardener through a smartphone app. We think the technology of the system is one way to attract people who would otherwise not take up seed and trowel.

For those new to taking care of plants the other thing to consider is information. Not only does the sensor network need to monitor the system, but something valuable needs to be done with the data. Perhaps someone has an idea for city-wide aggregate data which will look at successes from one urban garden and make suggestions to another?

This is your time to shine. Get those ideas flowing and post them as your entry for the Hackaday Prize. Even if you don’t see the build through the idea can still help someone else make the leap to greatness in their own brainstorming.

This Week’s Prizes

time-for-the-prize-week-4-prizes

We’ll be picking three of the best ideas based on their potential to help alleviate a wide-ranging problem, the innovation shown by the concept, and its feasibility. First place will receive an RGB Shades Kit. Second place will receive a GoodFET42 JTAG programmer and debugger. Third place will receive a Hackaday CRT Android tee.


The 2015 Hackaday Prize is sponsored by:

Time for the Prize: Big Water

I inadvertently started a vigorous debate a few weeks ago with the Time for the Prize post about a shower feedback loop. That debate was on the effect of curbing household water since households make up a relatively small percentage of total use. I think we should be thinking of solutions for all parts of the problem and so this week we’ll be looking for ideas that can help conserve water in large-scale use cases. Primarily these are agricultural and industrial but if you know of others feel free to make your case.

According to the United States Department of Agriculture, about 80% of all ground and surface water is used in agriculture. I’m not particularly interested in hearing a debate on water rights and the like (there’s a rather interesting article here if you want more on that). The agriculture industry produces food, and employs a lot of people. The conflict is of course long growing season versus lack of water compounded by severe drought. Even if we could move our food production elsewhere it would be a monumental undertaking to also relocate the infrastructure supporting it. Of course we need to look to the future, but can we leverage our engineering prowess now to conserve the water that is being used right now?

Enter with an Idea

Write down your ideas for agricultural and industrial water conservation as a project on Hackaday.io. Tag the project 2015HackdayPrize. Do this by next Monday and you’re in the running for this week’s awesome prizes.

You aren’t necessarily committing yourself to finishing out the build. At this point we want to get the idea machine rolling. One good idea could spark the breakthrough that makes a real difference in the world.

This Week’s Prizes

time-for-prize-prizes-week-3

We’ll be picking three of the best ideas based on their potential to help alleviate a wide-ranging problem, the innovation shown by the concept, and its feasibility. First place will receive a DSLogic 16-channel Logic Analyzer. Second place will receive a an Adafruit Bluefruit Bluetooth Low Energy sniffer. Third place will receive a Hackaday robot head tee.


The 2015 Hackaday Prize is sponsored by:

Retrotechtacular: Hacking Mother Nature’s North Temperate Regions

…because they’ll tickle your insides! Seriously, don’t eat them if you happen to parachute alone into wilderness and must survive without firearms or equipment like our protagonist here. This 1955 US Navy-produced gem of a training film will show you how to recognize, procure, and prepare many kinds of nutritious plant, insect, and animal life commonly found between 45° and 70° north latitude.

While you hone your large game hunting skills, you can tide yourself over with all kinds of things that will just sit there ready to be plucked for your nourishment: many berries and fruits, nuts, moss, lichens, and the inner bark of several kinds of trees is edible. Sate your taste for savory with grubs, termites, or grasshoppers. When in doubt, eat what the birds and small animals are eating, but stay away from mushrooms. It’s too hard to distinguish the poisonous varieties.

Many edible things are found in and around bodies of water. Game such as deer, ducks, and birds are attracted to water and make their homes near it. Various kinds of traps made from twigs and vegetation will outwit rabbits and squirrels. You can fashion a bow and arrow in order to kill large quadrupeds like deer, elk, and ram. It’s best to aim for the head, neck, or just behind the shoulders as these are the most vulnerable areas.

Once you have killed a large animal, prepare it for cooking by draining its blood and removing its entrails. There are many ways to cook your spoils of survival, and most of them involve cutting the meat into small pieces first. Hopefully, you have some basic tools for starting fires.

Continue reading “Retrotechtacular: Hacking Mother Nature’s North Temperate Regions”

Preparing sushi with the help of lasers

It’s not too often that we cover food here on Hackaday, but when we saw how a laser cutter was being used to help enhance the look of sushi, we decided to share. Even if you don’t enjoy sushi, it’s hard not to argue that it can often be more like edible art than simply food. The preparation that goes into well-made sushi is extensive, and this laser cut maki certainly takes things up a notch.

In the wake of the 2011 tsunami many businesses were suffering, including Umino Seaweed whose primary product is nori – the ubiquitous green seaweed wrapper found in/on many sushi rolls. They were looking for something to attract attention to the brand, while remaining respectful to the centuries-old tradition of making sushi.

They sent their request to ad agency I&SBBDO who came up with the fancy looking nori you see above. Each sheet of seaweed is laser cut with traditional Japanese imagery, from the Sakura (cherry blossom) to the Kumikikkou (tortoise shell). We’re not sure if these sheets of nori are actually for sale or have just been put together for solely advertising, either way we think this is a novel and frivolous, but awesome use for a laser cutter. Also, we’re pretty hungry now – anyone up for grabbing some sushi?

[via Make]

Candied LEDs are a light, tasty treat

rock_candy_diffused_leds

[Emily Daniels] recently snagged a free iPad in the Instructables “Play with your food challenge” with an interesting way to work with LEDs. Growing up, most kids attempted to make, or at least have seen rock candy be produced. [Emily] thought it would be interesting to mix LEDs with the stuff to see what she could come up with, and her candied LEDs are the result.

The process is pretty straightforward, and involves mixing up a batch of supersaturated sugar syrup in which LEDs are suspended. The LEDs act as a nucleation point for the crystal formation, growing a nice solid coating of sugar after a couple weeks’ time. After some cleaning up, the LEDs can be connected to a coin cell battery or similar, as you would normally do. The sugar acts as a diffusing medium for the LEDs, giving them a nice soft beam pattern.

Obviously you likely wouldn’t want to use these for any long-term electronics project, but it’s a fun activity for the kids, and it could be a good way to incorporate electronics into baked goods.