The Ultimate FPV Cleans House

With much of the world in the doldrums of the winter, hackers are getting a bit stir crazy. [Notamed Closed] would much rather be outside flying his First Person View (FPV) quadcopters. Sure there are indoor drones, but [Notamed] wanted to keep grounded. He grabbed his R/C equipment, his Roomba, and of course an Arduino to build the ultimate FPV experience.

There aren’t many details on this build, but it’s not too hard to deduce what [Notamed] has done. He’s using a standard R/C transmitter and receiver. Instead of driving servos, the receiver plugs into an Arduino Uno. The Uno translates the PPM R/C signals to serial commands. Most Roomba’s include a serial port made especially for hackers. [Notamed] simply sends the proper iRobot Serial Command Interface (SCI) messages, and the robot is his to control.

The FPV side of things is a bog standard FPV camera and transmitter, sending standard definition video to his goggles. A GoPro is along for the ride to capture high-quality video.

Sure this is a quick hacked together build. All the parts are taped on to the Roomba. We’re sure this is on purpose. When the weather warms up, the R/C equipment goes back in the air, and the Roomba becomes just another vacuuming robot – once again a danger to pet messes everywhere.

Check out the video after the break.

Continue reading “The Ultimate FPV Cleans House”

Cheap DIY FPV Micro-Drone

FPV drones are a fun but often costly hobby for beginners. Opting for a smaller drone will reduce the chance of damaging the drone when one invariably crashes and the smaller props are also a lot safer if there are any innocent bystanders. YouTuber and Instructables user [Constructed] wanted a cheap FPV capable drone that they could comfortably fly in-and-out of doors, so of course they built their own.

Once the drone’s frame was 3D printed, the most complex part about soldering four small-yet-powerful 8.5 mm motors to the Micro Scisky control board is ensuring that you attach them in the correct configuration and triple-checking them. A quick reshuffling of the battery connections and mounting the FPV camera all but completed the hardware side of the build.

Before plugging your flight controller into your PC to program, [Constructed] warns that the battery must be disconnected unless you want to fry your board. Otherwise, flashing the board and programming it simply requires patience and a lot of saving your work. Once that’s done and you’ve paired everything together, the sky — or ceiling — is the limit!

Continue reading “Cheap DIY FPV Micro-Drone”

Brain Controlled Tracked Robot

[Imetomi] found himself salvaging a camera from a broken drone when he decided to use it in a new project, a tracked robot with a live video feed from the mounted camera.

… I had a cheap Chinese drone that was broken, but its camera seemed to be operating and when I took apart my drone I found a small WiFi chip with a video transmitter. I (decided) that I will use this little circuit for a project and I started to buy and salvage the parts.

Being a tracked robot, it can negotiate most types of terrain and climb hills up to 40 degrees. It is powered by two 18650 lithium-ion batteries with a capacity of 2600 mAh and the remote control is based on the HC-12 serial communication module. You can control it with a joystick and watch the camera’s live-stream in a virtual reality glass. That’s pretty neat but it’s not all.

[Imetomi] also used a hacked Nacomimi Brainwave Toy to make a brain controlled version of his robot. The brainwaves are detected using sensors placed on the scalp. To actually control it the operator has to focus on the right hand to move right, focus on the left hand to move left, blink to move forward and blink again to stop. There is also an ultrasonic sensor to help navigation so the robot doesn’t bump into things. It’s not very precise but you can always build the joystick version or, even better, make a version with both controls.

Continue reading “Brain Controlled Tracked Robot”

The ARRL Raises A Stink About Illegal FPV Transmitters

We have all been beneficiaries of the boom in availability of cheap imported electronics over the last decade. It is difficult to convey to someone under a certain age the step change in availability of parts and modules that has come about as a result of both the growth of Chinese manufacturing and Internet sales that allow us direct access to sellers we would once only have found through a lengthy flight and an intractable language barrier.

So being able to buy an ESP8266 module or an OLED display for relative pennies is good news, but there is a downside to this free-for-all. Not all the products on offer are manufactured to legal standards wherever in the world we as customers might be, and not all of them are safe to use. We’ve all seen teardowns of lethal iPhone charger knock-offs, but this week the ARRL has highlighted an illegal import that could take being dangerous to a whole new level as well as bring an already beleaguered section of our community to a new low.

The products the radio amateurs are concerned about are video transmitters that work in the 1.2GHz band. These are sold for use with FPV cameras on multirotors, popularly referred to as drones, and are also being described as amateur radio products though their amateur radio application is minimal. The ARRL go into detail in their official complaint (PDF) about how these devices’ channels sit squarely over the frequencies used by GLONASS positioning systems, and most seriously, the frequencies used by the aircraft transponders on which the safety of our air traffic control system relies.

The multirotor community is the unfortunate recipient of a lot of bad press, most of which is arguably undeserved and the result of ignorant mass media reporting. We’ve written on this subject in the past, and reported on some of the proposals from governments which do not sound good for the enthusiast. It is thus a huge concern that products like those the ARRL is highlighting could result in interference with air traffic, this is exactly not the association that multirotor fliers need in a hostile environment.

The ARRL complaint highlights a particular model with a 5W output, which is easily high enough to cause significant interference. It is however just one of many similar products, which a very straightforward search on the likes of AliExpress or eBay will find on sale for prices well under $100. So if you are concerned with multirotors we’d urge you to ensure that the FPV transmitters you or your friends use are within the legal frequencies and power levels. We’re sure none of you would want an incident involving a manned aircraft on your conscience, nor would you relish the prospect of the encounter with law enforcement that would inevitably follow.

In the past we’ve taken a look at some of the fuss surrounding reported drone incidents, and brought you news of an Australian sausage lover in hot water for drone-based filming. It’s a hostile world out there, fly safe!

The World’s Lightest Brushless FPV Quadcopter

When a claim is made for something being the world’s lightest it is easy to scoff, after all that’s a bold assertion to make. It hasn’t stopped [fishpepper] though, who claims to have made the world’s lightest brushless FPV quadcopter. Weighing in at 32.4 grams (1.143 oz) it’s certainly pretty light.

The frame is a circular design cut from carbon-fiber-reinforced polymer, and on it are mounted four tiny brushless motors. In the center are the camera and battery on a 3D printed mount, as well as custom flight and speed controller boards. There are a series of posts detailing some of the design steps, and the result is certainly a capable aircraft for something so tiny. If you fancy experimenting with the design yourself, the files are available for download on the first page linked above.

There are two aspects to this build that make it interesting to us. First, the lightest in the world claim. We think someone will come along with something a bit lighter, and we can’t wait to see a lightest multirotor arms race. Good things come of technology races, which brings us to the second aspect. Governments are busy restricting the use of larger multirotors, to the extent that in some parts of the world all that will be available for non professionals will be sub-200g toy craft. Any project like this one which aims to push the boundaries of what is possible with smaller multirotors is thus extremely interesting, and we hope the community continue to innovate in this direction if only to make a mockery of any restrictions.

To get some idea of the sort of legislative measures we might be seeing, take a look at our coverage of a consultation in just one country.

3D Printed R/C Lifeboat

Radio control boats usually bring up thoughts of racing catamarans, or scale sailing yachts. This build takes things in a slightly different direction. A radio controlled lifeboat with a built-in First Person View (FPV) transmitter. [Peter Sripol] used to be one of the awesome folks over at Flite Test. Now he’s gone solo, and has been cranking out some great builds on his YouTube channel. His latest build is a lifeboat loosely based on the totally enclosed lifeboats used on oil tankers and other seafaring vessels.

[Peter] designed the boat in 3D modeling software and printed it on his Lulzbot Taz 6. The files are available on Thingiverse if you want to print your own. The lower hull was printed in two pieces then epoxied together. Peter’s musical build montage goes by fast, proving that he’s just as good editing video as he is scratch-building R/C craft. Along the way he shows us everything from wiring up speed controls to cutting and soldering up a rudder. The final touch on this boat is a micro FPV camera and radio transmitter. As long as the boat is in range, it can be piloted through video goggles.

[Peter’s] boat is destined to be tested on an upcoming trip to Hawaii, so keep an eye on his channel to see how it fares in the monster waves!

Look What Showed Up For Bring-A-Hack At OSH Park

Hackaday was in Portland last weekend for the Open Hardware Summit. I did a brief recap earlier this week but this post has been on my mind the entire time. The night before the summit, OSH Park (the Purveyors of Perfect Purple PCBs which we all know and love) hosted a Bring-A-Hack at their headquarters. [Laen] knows how to throw a party — with a catered spread and open bar which all enjoyed. The place was packed with awesome hackers, and everyone had something amazing to show off.

In fact, there were far too many people showing off hardware for me to capture all in one evening. But join me after the jump for six or seven examples that really stuck out.

Continue reading “Look What Showed Up For Bring-A-Hack At OSH Park”