I need someone to explain this to me.

Powering a RPi with Hydrogen

raspberryHy

Looking for a new way to power your Raspberry Pi? The raspberryHy project aims to develop a small fuel cell designed for powering the credit card sized computer. It adds a proton exchange membrane (PEM) fuel cell, a battery, and custom control electronics to the Pi.

The system takes hydrogen in from a compressed hydrogen cartridge and feeds it through a regulator. This passes the hydrogen into the PEM fuel cell at the correct pressure, and creates a potential. The control electronics boost that voltage up to the 5 V required on the Pi’s USB port. There’s also an electronically controlled purge valve which periodically exhausts the fuel cell.

There’s a few reasons you might want to run your Pi with hydrogen. Run time of the fuel cell is limited only by the amount of hydrogen you can store. In theory, you could connect a large cylinder for very long run times. Combined with a battery, this could be quite useful for running Pis in remote locations, or for long-term backup power. The raspberryHy will be presented at Hannover Fair 2014 this month.

Powering vehicles with aluminum

Pop a few aluminum bits into this little RC racer and you’ll have power for around forty minutes. This concept, which has been patented, is the result of a college research project. It uses a chemical reaction between aqueous Sodium Hydroxide and aluminum. The result of that reaction is hydrogen, which is gathered and directed to a fuel cell that drives the car.

Novel? Yes. Interesting? Absolutely. But you should be raising an eyebrow at the dubious choice of fuel that is aluminum.

If you don’t know what we’re talking about let us paint you a picture. Aluminum is a metal that is refined from bauxite ore. It takes an immense amount of electricity to smelt the metal. This is usually justified because aluminum is one of the most recyclable substances on earth, capable of being melted down and reformed countless times. But dissolving it in drain cleaner breaks it down and then it’s gone. So what we have here simply must be the least efficient disposable battery so far developed. It’d probably use less resources to grow and harvest lemons as a power source.

[Read more...]