Modern Toilet Generates Energy

Environmental Engineering [Prof Jaeweon Cho] at South Korea’s Ulsan National Institute of Science and Technology specializes in water and waste management. He has developed an energy-generating toilet called BeeVi (pronounced beevee) that recycles your waste in three ways. Liquid waste is processed in a microbial reaction tank to make a liquid fertilizer. Solid waste is pumped into an anaerobic digestion tank, which results in methane gas used to power a silicone oxide fuel cell to make electricity. The remaining solids are composted to make fertilizer. The daily waste from one person is about 500 g, which can generate about 50 L of methane.

The BeeVi toilets, located on the UNIST campus, pay students in a digital currently called Ggools, or Honey Money in English. Each deposit earns 10 Ggools, which can be used to purchase coffee, instant noodles, and other items (one Ggool is equivalent to about $3.00 value). The output from this pilot project is used to partially power the building on campus, and to fertilize gardens on the grounds. If you want to learn more, here is a video lecture by [Prof Cho] (in English).

Waste management is an area of research around the world. The Gates Foundation has been funding research into this field for ten years, and has held a number of expos over the years highlighting innovative solutions, most recently being the 2018 Reinvent the Toilet Expo in Beijing. We wrote a piece about the future of toilets last year as well.

Continue reading “Modern Toilet Generates Energy”

Toyota’s Hydrogen-Burning Racecar Soon To Hit The Track

With the rise of usable electric cars in the marketplace, and markets around the world slowly phasing out the sale of fossil fuel cars, you could be forgiven for thinking that the age of the internal combustion engine is coming to an end. History is rarely so cut and dry, however, and new technologies aim to keep the combustion engine alive for some time yet.

Toyota’s upcoming Corolla Sport-based hydrogen-burning racer. Credit: Toyota media

One of the most interesting technologies in this area are hydrogen-burning combustion engines. In contrast to fuel cell technologies, which combine hydrogen with oxygen through special membranes in order to create electricity, these engines do it the old fashioned way – in flames. Toyota has recently been exploring the technology, and has announced a racecar sporting a three-cylinder hydrogen-burning engine will compete in this year’s Fuji Super TEC 24 Hour race.

Hydrogen Engines?

The benefit of a hydrogen-burning engine is that unlike burning fossil fuels, the emissions from burning hydrogen are remarkably clean. Burning hydrogen in pure oxygen produces only water as a byproduct. When burned in atmospheric air, the result is much the same, albeit with small amounts of nitrogen oxides produced. Thus, there’s great incentive to explore the substitution of existing transportation fuels with hydrogen. It’s a potential way to reduce pollution output while avoiding the hassles of long recharge times with battery electric technologies. Continue reading “Toyota’s Hydrogen-Burning Racecar Soon To Hit The Track”

Fuel Cell Drone Aims For Extended Flight Times

The RC world was changed forever by the development of the lithium-polymer battery. No longer did models have to rely on expensive, complicated combustion engines for good performance. However, batteries still lack the energy density of other fuels, and so flying times can be limited. Aiming to build a drone with impressively long endurance, [Игорь Негода] instead turned to hydrogen power.

The team fitted a power meter to the plane, aiming a camera at it to measure power draw during flight.

With a wingspan of five meters, and similar length, the build is necessarily large in order to carry the hydrogen tank and fuel cell that will eventually propel the plane, which uses a conventional brushless motor for propulsion. Weighing in at 6 kilograms, plenty of wing is needed to carry the heavy components aloft. Capable of putting out a maximum of 200W for many hours at a time, the team plans to use a booster battery to supply extra power for short bursts, such as during takeoff. Thus far, the plane has flown successfully on battery power, with work ongoing to solve handling issues and determine whether the platform can successfully fly on such low power.

We’re eager to see how the project develops, particularly in regards to loiter time. We can imagine having a few pilots on hand may be necessary with such a long flight time planned — other drones of similar design have already surpassed the 60-minute mark. Video after the break.

Continue reading “Fuel Cell Drone Aims For Extended Flight Times”

Hyundai Makes Push Towards Fuel Cell Trucking

Hyundai has begun shipping fuel-cell based heavy duty trucks to face off against battery-electric trucks in the commercial hauling market.

Battery electric vehicles, more commonly known as electric cars, have finally begun to take on the world in real numbers. However, they’re not the only game in town when it comes to green transportation. Fuel cells that use tanks of hydrogen to generate electricity with H2O as the main byproduct have long promised to take the pollution out of getting around, without the frustrating charge times. Thus far though, they’ve failed to make a major impact. Hyundai still think there’s value in the idea, however, and have developed their XCIENT Fuel Cell truck to further the cause. Continue reading “Hyundai Makes Push Towards Fuel Cell Trucking”

Are Hydrogen Cars Still Happening?

Potentially coming to a service station near you.

In every comment section, there’s always one. No matter the electric vehicle, no matter how far the technology has come, there’s always one.

“Only 500 miles of range? Electric cars are useless! Me, and everyone I know, drives 502 miles every day at a minimum! Having to spend more than 3 minutes to recharge is completely offensive to my entire way of life. Simply not practical, and never will be.”

Yes, it’s true, electric cars do have limited range and can take a little longer to recharge than a petrol or diesel powered vehicle. Improvements continue at a rapid pace, but it’s not enough for some.

To these diehards, hydrogen fuel cell vehicles may have some attractive benefits. By passing hydrogen gas through a proton-exchange membrane, electricity can be generated cleanly with only water as a byproduct. The technology holds a lot of promise for powering vehicles, but thus far hasn’t quite entered our daily lives yet. So what is the deal with hydrogen as a transport fuel, and when can we expect to see them in numbers on the ground?

Continue reading “Are Hydrogen Cars Still Happening?”

Hackaday Podcast 018: Faxploitation! Ikea RFID Hacking, Space Ads, Hydrogen Dones, And Blinkies

Hackaday Editors Elliot Williams and Mike Szczys gather round the microphone to spin tales from a week of hacks. All the rage are fax-machine-based malware, a hydrogen fuel cell drone, and bringing color to the monochrome world of the original Super Mario Land. There are at least three really cool LED hacks this week, plus Tom’s been exploring space advertising, Maya’s debunking solder myths, and Elliot goes ga-ga for a deep Ikea electronics hack. Closing out the show is an interview with Bart Dring about his exquisitely-engineered string art robot.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (60 MB or so.)

Continue reading “Hackaday Podcast 018: Faxploitation! Ikea RFID Hacking, Space Ads, Hydrogen Dones, And Blinkies”

A Hydrogen Fuel Cell Drone

When we think about hydrogen and flying machines, it’s quite common to imagine Zeppelins, weather balloons and similar uses of hydrogen in lighter-than-air craft to lift stuff of the ground. But with smaller and more efficient fuel cells, hydrogen is gaining its place in the drone field. Project RACHEL is a hydrogen powered drone project that involves multiple companies and has now surpassed the 60 minutes of flight milestone.

The initial target of the project was to achieve 60 minutes of continuous flight while carrying a 5 kg payload. The Lithium Polymer battery-powered UAVs flown by BATCAM allow around 12 minutes of useable flight. The recent test of the purpose-built fuel cell powered UAV saw it fly for an uninterrupted 70 minutes carrying a 5 kg payload.  This was achieved on a UAV with below 20 kg maximum take-off mass, using a 6-litre cylinder containing hydrogen gas compressed to 300 bar.

While this is not world record for drones and it’s not exactly clear if there will be a commercial product nor the price tag, it is still an impressive feat for a fuel cell powered flying device. You can watch the footage of one of their tests bellow:

Continue reading “A Hydrogen Fuel Cell Drone”