Algorithm Turns PCBs Into Art

Many of us have held a circuit board up to a strong light to get a sense for how many layers of circuitry it might contain. [alongruss] did this as well, but, unlike us, he saw art.

We’ve covered some art PCBs before. These, for the most part, were about embellishing the traces in some way. They also resulted in working circuits. [alongruss]’s work focuses more on the way light passes through the FR4: the way the silkscreen adds an interesting dimension to the painting, and how the tin coating reflects light.

To prove out and play with his algorithm he started with GIMP. He ran the Mona Lisa through a set of filters until he had layers of black and white images that could be applied to the layers of the circuit board. He ordered a set of boards from Seeed Studio and waited.

They came back a success! So he codified his method into Processing code. If you want to play with it, take a look at his GitHub.

China’s Fusion Reactor Hits Milestone

An experimental fusion reactor built by the Chinese Academy of Science has hit a major milestone. The Experimental Advanced Superconducting Tokamak (EAST) has maintained a plasma pulse for a record 102 seconds at a temperature of 50 million degrees – three times hotter than the core of the sun.

The EAST is a tokamak, or a torus that uses superconducting magnets to compress plasma into a thin ribbon where atoms will fuse and energy will be created. For the last fifty years, most research has been dedicated to the study of tokamaks in producing fusion power, but recently several projects have challenged this idea. The Wendelstein 7-X  stellarator at the Max Planck Institute for Plasma Physics recently saw first plasma and if results go as expected, the stellarator will be the design used in fusion power plants. Tokamaks have shortcomings; they can only be ‘pulsed’, not used continuously, and we haven’t been building tokamaks large enough to produce a net gain in power, anyway.

Other tokamaks currently in development include ITER in France. Theoretically, ITER is large enough to attain a net gain in power at 12.4 meters in diameter. EAST is much smaller, with a diameter of just 3.7 meters. It is impossible for EAST to ever produce a net gain in power, but innovations in the design that include superconducting toroidal and poloidal magnets will surely provide insight into unsolved questions in fusion reactor design.

First Plasma In The World’s Largest Stellerator

If you’re looking for the future of humanity, look no further than the first plasma generated in the Wendelstein 7-X Stellerator at the Max Planck Institute for Plasma Physics. It turned on for the first time yesterday, and while this isn’t the first fusion power plant, nor will it ever be, it is a preview of what may become the invention that will save humanity.

A glimpse of plasma in side the Stellerator
A glimpse of plasma in side the Stellerator

For a very long time, it was believed the only way to turn isotopes of hydrogen into helium for the efficient recovery of power was the Tokamak. This device, basically a hollow torus lined with coils of wire, compresses plasma into a thin circular string. With the right pressures and temperatures, this plasma will transmute the elements and produce power.

Tokamaks have not seen much success, though, and this is a consequence of two key problems with the Tokamak design. First, we’ve been building them too small, although the ITER reactor currently being built in southern France may be an exception. ITER should be able to produce more energy than is used to initiate fusion after it comes online in the 2020s. Tokamaks also have another problem: they cannot operate continuously without a lot of extraneous equipment. While the Wendelstein 7-X Stellerator is too small to produce a net excess of power, it will demonstrate continuous operation of a fusion device. [Elliot Williams] wrote a great explanation of this Stellerator last month which is well worth a look.

While this Stellerator is just a testbed and will never be used to generate power, it is by no means the only other possible means of creating a sun on Earth. The Polywell – a device that fuses hydrogen inside a containment vessel made of electromagnets arranged like the faces of a cube – is getting funding from the US Navy. Additionally, Lockheed Martin’s Skunk Works claims they can put a 100 Megawatt fusion reactor on the back of a truck within a few years.

The creation of a fusion power plant will be the most important invention of all time, and will earn the researchers behind it the Nobel prize in physics and peace. While the Wendelstein 7-X Stellarator is not the first fusion power plant, it might be a step in the right direction.

High Voltage Hacks: Transmute the elements in your garage

The magnum opus of alchemy was the Philosopher’s stone, a substance that was able to turn common metals into gold. Unlike alchemists, [Carl Willis] might not be poisoning himself in a multitude of ways, but he did build a Farnsworth fusor that’s capable of turning Hydrogen into Helium.

To fuse Hydrogen in his device, [Carl] first evacuates a vacuum chamber. Deuterium (Hydrogen with an added neutron) is injected into the chamber, and a spherical cathode made of Tungsten is charged to 75 kV. The deuterium gas is heated and confined by the cathode and fuses into Helum. The electrostatic confinement of the plasma isn’t very much different from some old CRT tubes. This isn’t a coincidence – both the fusor and CRTs were invented by the same man.

While no fusion experiments – including some billion dollar experiments – have ever produced a net energy gain, this doesn’t mean it’s not an impressive engineering feat. If you’d like to try your hand at building your own fusor, drop by the surprisingly active research forum. There’s a lot of really good projects to look through over there.

Build a fusion reactor in your home

At first we were pretty skeptical of this home made fusion reactor instructable. However, we’ve seen home made fusion reactors before, so it is technically possible, we guess. The construction alone is interesting enough to warrant a few moments of looking.

We’re not experts, so pardon us if we can’t tell you exactly what is going on, but we can appreciate the craftsmanship involved with the build. The vacuum chamber specifically is quite nice.

We know that some of our commenters probably have more experience here. Tell us, does this thing look legit?