Machining an Orrery

machining-an-orrery

What in the heck is an Orrery? If you’re looking at the image above we’re sure you’ve already figured it out (kudos to the big brains that knew the word). For those that don’t get it, an Orrery is a mechanical device that represents the movements of planets and moons. We never thought of building one ourselves. After seeing the machining process for what’s shown above we’re not sure if we’re excited, or scared off by all the work that went into it.

You might want to bust out the Chromecast and hit the sofa for this one. There are dozens of YouTube videos showing the build. From cutting sheet stock into round slugs, to making teeth, teeth, teeth, and more teeth it’s not just the gears that go into this one. You’re also going to needs the orbs themselves.

We have fond (perhaps scary) memories of the first time we saw an Orrery as a part of the set in The Dark Crystal.

[Read more...]

Automata and wooden gears

mechanism

While most animated machines we deal with every day – everything from clocks to cars to computers – are made of metal, there is an art to creating automated objects out of wood. [Dug North] is a creator of such inventions, making automata out of wooden gears, cogs, and cams.

[Dug]‘s inventions are simple compared to turbine engines, but they still retain an artistry all their own. With just simple woodworking tools, he’s able to creating moving vignettes of everyday scenes, everything from a dog barking at a bird, to Santa Claus gracefully soaring over a house on Christmas Eve.

Below, you’ll find a video of [Dug]‘s creation, ‘An Unwelcome Dinner Guest’ – an automated dog barking at a wooden bird. There’s also a video of him being interviewed by the awesome people at Tested last year at the World Maker Faire.

[Read more...]

Retrotechtacular: Mechanical targeting computers

retrotechtacular-mechanical-computer

The device that these seamen are standing around is a US Navy targeting computer. It doesn’t use electricity, but relies on mechanical computing to adjust trajectories of the ship’s guns. Setting up to twenty-five different attributes by turning cranks and other input mechanisms lets the computer automatically calculate the gun settings necessary to hit a target. These parameters include speed and heading of both the ship and it’s target, wind speed and bearing, and the location of the target in relation to this ship. It boggles the mind to think of the complexity that went into this computer.

The first of this seven part series can be seen after the break. The collection covers shafts,  gears, cams, and differentials. Sounds like it would be quite boring to sit through, huh? But as we’ve come to expect from this style and vintage of training film it packs a remarkable number of simple demonstrations into the footage.

[Read more...]

Printed machine does nothing until the heat death of the Universe

machine

A 2:1 gear reduction slows down a spinning shaft to half speed and doubles the torque. Repeat this a few times, and you’ve got a ludicrous amount of torque moving too slowly to see with even precision instruments. That’s the idea behind [Jeshua]‘s project, a Printed Machine partially embedded in a block of concrete.

[Jeshua]‘s build is a replica of one of [Arthur Ganson]‘s kinetic sculptures. [Ganson]‘s machine uses 50 sets of gears to reduce the rotation of 200 RPM motor more that 200  quintillion times. The final gear in the sculpture is embedded in a block of concrete, waiting to be freed by either erosion of the concrete block or the sun going nova.

Instead of metal gears, [Jeshua] used 3D printed gears in PLA. After assembling them on a stand, he cast concrete around the final, barely moving gear. It’s an impressively useless build that will turn to dust before the final gear makes even 1/10th of a revolution. This machine could have a longer life if it were printed with ABS instead of PLA, but with the time scales we’re talking about here it won’t make much difference.

Building a mechanical counter out of scrap wood

Watching [Matthias Wandel] fabricate this mechanical counter from scrap wood is just fascinating. He likens the mechanism to the counters you would find on decades-old cassette tape players.

You may recognize the quality of [Matthias'] work. We’ve seen several pieces, but his binary adder is still one of our favorites. This project gives us a very clear view of the development and fabrication process. He even posted a detailed guide if you want to build your own.

He started by prototyping a mechanism to increment and decrement the counter. With that proven design he started laying out the rest of the gears. These were cut from plywood scraps he had from other projects. Notice the small gears seen above which are missing parts of some teeth. Those sections were removed using a drill press with a Forstner bit. The missing teeth cause the next digit over to increment more slowly, resulting in a 1/10 ratio. This part of the design is demonstrated about three minutes into the video after the break.

[Read more...]

Mechanical relay logic that was snubbed for a microcontroller

[Alex] was tasked with a control design problem for a set of motors. The application called for the back of a truck to open up, some 3D scanning equipment to rise from its enclosure, and finally the equipment needed to rotate into place. All of this needed to happen with one flip of a switch, then proceed in reverse when the switch was turned off. We can understand why the final design used a microcontroller, but we also think that [Alex's] relay logic circuit is an eloquent way of doing things.

He uses limiting switches as the feedback loop for the logic. In the video after the break he walks us through the schematic. Each of the three motors has an up and down limiting switch. These control the three relays which switch power to the motors. We like the design because interrupting the movement mid-operation provides no problem for the system. The only real issue we see is that relays wear out, and the automotive application of the hardware may cause this to happen more quickly than normal.

You may recognize the clear gears used in the demo. [Alex] previously showed us how he makes those.

[Read more...]

Hackaday Links: April 7, 2012

Need some gears? Got a timing belt?

[filespace] sent in a neat build he stumbled upon: making gears with plywood and a timing belt. Just cut out a plywood disk and glue on a section of timing belt. There’s some math involved in getting all the teeth evenly placed around the perimeter, but nothing too bad. Also useful for wheels, we think.

We’re on a chess kick now.

Huge chess sets are cool, right up until you try to figure out where to store the pieces when they’re not being used. [Jayefuu] came up with a neat solution to this problem. His pieces are cut out of coroplast (that corrugated plastic stuff political campaign signs are made of), making it relatively inexpensive and just as fun as normal giant chess pieces on a tile floor.

<INSERT MARGINALLY RELEVANT PORTAL QUOTE HERE>

[Randy]‘s son is in the cub scouts. Being the awesome father he is, [Randy] helped out with this year’s pinewood derby build. It’s a car shaped like a portal gun with the obligatory color-changing LED. The car won the ‘Can’t get more awesome’ award, but wheel misalignment kicked it out of the competition during qualifying rounds. Sad, that. Still awesome, though.

These people are giving you tools for free

Caltech professor [Yaser Abu-Mostafa] is teaching a Machine Learning class this semester. You can take this class as well, even if the second lecture started last Thursday.

Turning an Arduino into a speech synthesizer

[AlanFromJapan] sent in this product page for an Arduino-powered speech synthesizer. We’re probably looking at a relabeled ATmega328 with custom firmware here; to use it, you replace the micro in your Arduino Uno with this chip. The chip goes for about $10 USD here, so we’ll give it a week until someone has this proprietary firmware up on the Internet. There are English morphemes that aren’t in Japanese, so you can’t just ‘type in English’ and have it work. Here’s a video.

Six things in this links post. We’re feeling generous.

What would you build if you had a laser cutter? [Doug Miller] made a real, working fishing reel. No build log or files, but here’s a nice picture.