2,100 Mechanical Mechanisms

[Nguyen Duc Thang]’s epic 2100 Animated Mechanical Mechanisms is one of the best YouTube channels we’ve ever seen. A retired mechanical engineer, [Nguyen Duc Thang] has taken on an immense challenge: building up 3D models of nearly every imaginable mechanism in Autodesk Inventor, and animating them for your amusement and enlightenment. And, no, we haven’t watched them all for you, but we’re confident that you’ll be able to waste at least a couple of hours without our help.

If you’re actually looking for something specific, with this many mechanisms demonstrated, YouTube is not the perfect lookup table. Thankfully, [Nguyen Duc Thang] has also produced a few hundred pages of documentation (PDFs, zipped) to go along with the series, with each mechanism classified, described, and linked to the video.

This is an amazing resource as it stands, and it’s probably a good thing that we don’t have access to the 3D files; between the filament cost and the time spent shepherding our 3D printer through 2,100 mechanisms, we’d be ruined. Good thing we don’t know about the Digital Mechanism and Gear Library or KMODDL.

Thanks [alnwlsn] for the tip!
Continue reading “2,100 Mechanical Mechanisms”

Frickin’ Amazing Clock

Wwood_clock_05e’ve featured a lot of clock builds, but this one, as the title suggests, is frickin’ amazing. Talented art student [Kango Suzuki] built this Wooden Mechanical Clock (Google translation from Japanese) as a project while on his way to major in product design. There’s a better translation at this link. And be sure to check out the video of it in motion below the break.

[Kango]’s design brief was to do something that is “easy for humans to do, but difficult for machines”. Writing longhand fits the bill, although building the machine wasn’t easy for a human either — he needed six months just to plan the project.

The clock writes time in hours and minutes on a magnetic board. After each minute, the escapement mechanism sets in motion almost 400 wooden cogs, gears and cams. The board is tilted first to erase the old numbers, and then the new numbers are written using four stylii.

The clock doesn’t have any micro controllers, Arduinos, servos or any other electronics. The whole mechanism is powered via gravity using a set of four weights. [Kango] says his biggest challenge was getting the mechanism to write the numbers simultaneously. While he managed the geometry right, the cumulative distortion and flex in the hundreds of wooden parts caused the numbers to be distorted until he tuned around the error.

Continue reading “Frickin’ Amazing Clock”

Experiments With A Bowden Extruder Filament Force Sensor

We were excited to learn that someone had started working with force sensors on filament extruders, especially after we posted about a recent development in filament thickness sensors.

[airtripper] primarily uses a Bowden extruder, and wanted to be a little more scientific in his 3D printing efforts. So he purchased a force sensor off eBay and modified his extruder design to fit it. Once installed he could see exactly how different temperatures, retraction rates, speed, etc. resulted in different forces on the extruder. He used this information to tune his printer just a bit better.

More interesting, [airtripper] used his new sensor to validate the powers of various extruder gears. These are the gears that actually transfer the driving force of the stepper to the filament itself. He tested some of the common drive gears, and proved that the Mk8 gear slipped the least and provided the most constant force. We love to see this kind of science in the 3D printing community — let’s see if someone can replicate his findings.

 

16-Bobbin Rope Braiding Machine Inspired by Surplus Store Find

When the Red Bull Creation build days were past, [David] pulled us aside and asked if we wanted to see the mechanical hack he’s been working on. He built this rope braiding machine, which uses 16 bobbins, with help from his brother [Jed].

Ideas for projects always come from funny places. [David] came up with this one after finding a rope braiding machine at Ax-man Surplus. This outlet, located in the Twin Cities (Minneapolis/St. Paul, Minnesota) has been the origin for innumerable hacks. Just one that comes to mind is this electric scooter project from the ’90s.

[David] wanted to understand how the mechanism, which divides the bobbins up into groups of orbiting spools, actually works. It’s both mesmerizing and quite tough to visualize how it works without really getting in there and looking at the gearing. Thankfully you can do just that if he follows through with his plan to turn this into a kit.

In case you don’t recognize him, [David] was on the 1.21 Jigawatt’s team during this year’s Creation. We’ve also seen a couple of hacks from him in the past like this half-tone drum printer, and this bicycle frame welding jig.

Machining an Orrery

machining-an-orrery

What in the heck is an Orrery? If you’re looking at the image above we’re sure you’ve already figured it out (kudos to the big brains that knew the word). For those that don’t get it, an Orrery is a mechanical device that represents the movements of planets and moons. We never thought of building one ourselves. After seeing the machining process for what’s shown above we’re not sure if we’re excited, or scared off by all the work that went into it.

You might want to bust out the Chromecast and hit the sofa for this one. There are dozens of YouTube videos showing the build. From cutting sheet stock into round slugs, to making teeth, teeth, teeth, and more teeth it’s not just the gears that go into this one. You’re also going to needs the orbs themselves.

We have fond (perhaps scary) memories of the first time we saw an Orrery as a part of the set in The Dark Crystal.

Continue reading “Machining an Orrery”

Automata and wooden gears

mechanism

While most animated machines we deal with every day – everything from clocks to cars to computers – are made of metal, there is an art to creating automated objects out of wood. [Dug North] is a creator of such inventions, making automata out of wooden gears, cogs, and cams.

[Dug]’s inventions are simple compared to turbine engines, but they still retain an artistry all their own. With just simple woodworking tools, he’s able to creating moving vignettes of everyday scenes, everything from a dog barking at a bird, to Santa Claus gracefully soaring over a house on Christmas Eve.

Below, you’ll find a video of [Dug]’s creation, ‘An Unwelcome Dinner Guest’ – an automated dog barking at a wooden bird. There’s also a video of him being interviewed by the awesome people at Tested last year at the World Maker Faire.

Continue reading “Automata and wooden gears”

Retrotechtacular: Mechanical targeting computers

retrotechtacular-mechanical-computer

The device that these seamen are standing around is a US Navy targeting computer. It doesn’t use electricity, but relies on mechanical computing to adjust trajectories of the ship’s guns. Setting up to twenty-five different attributes by turning cranks and other input mechanisms lets the computer automatically calculate the gun settings necessary to hit a target. These parameters include speed and heading of both the ship and it’s target, wind speed and bearing, and the location of the target in relation to this ship. It boggles the mind to think of the complexity that went into this computer.

The first of this seven part series can be seen after the break. The collection covers shafts,  gears, cams, and differentials. Sounds like it would be quite boring to sit through, huh? But as we’ve come to expect from this style and vintage of training film it packs a remarkable number of simple demonstrations into the footage.

Continue reading “Retrotechtacular: Mechanical targeting computers”