GimBall Bounces off Trees and Comes Back for More

gimball

We’ve seen a lot of flying robots over the years, and for many of them, intimate contact with a stationary object would be a very, very bad thing. [The Laboratory of Intelligent Systems], at EPFL in Switzerland designed GimBall to not only take impacts in stride, but to actually use them as navigational aids. This is similar to an insect bouncing off an obstacle in nature.

GimBall’s design is a bit of a departure from the norm as well. Contra-rotating airplane propellers provide thrust while countering torque. It appears that the propellers are driven by two separate brushless outrunner motors, which would allow for yaw control via mismatched torque. Directional control is provided by a 4 articulated vanes on the bottom of the craft. Standard RC servos move the vanes. While not as common as quadcopters today, this “tail sitting” design has been around for decades. The Convair XFY “Pogo” is a good example of an early tail sitter design.

What makes GimBall so novel is its exoskeleton. A carbon fiber gimbal encircles the entire craft. Around the gimbal is a geodesic sphere made up of carbon fiber rods and plastic joints. The sphere acts like a shock absorber, allowing GimBall to harmlessly bounce off objects. The gimbal ensures that impacts won’t upset the craft’s attitude. Check out the video after the break to see how these two systems form an impressive shell which completely separates GimBall’s chassis from the outside world. GimBall can actually use its shell to “rotate” around obstacles.

[Read more...]

Showing off a high-performance brushless motor camera gimbal

gopro-brushless-motor-gimbal

Here’s [Tom Parker] showing off a brushless motor gimbal stabilizer for his GoPro camera. We saw a similar project a couple of weeks back that featured a 3d printed quadcopter mount. This offering is meant to be held in your hands. It keeps the subject in frame even if the cameraman’s hands pitch and roll (we figured aeronautical terms were best here). This image shows him demonstrating a level camera as he quickly rolls the frame from one side to the other. It doesn’t compensate for yaw, which is something he may change in the next iteration. We already like the results he’s getting with it.

About 3:15 into the video demo below we get a very quick description of the build itself. He started it as a project at University. Fabrication included work on a 3D printer, laser cutter, and vacuum forming machine. The grips are bicycle handlebar components. To overcome the stabilization system the operator has access to a joystick. Without this you’d never be able to aim the camera up or down because of auto-leveling.

[Read more...]

Brushless gimbal 3D printed and bolted to quadcopter

IMG_20130602_004802

A handful of 3D printed parts, some brushless motors, and a bit of control hardware add a flair of cinematography to this quadcopter.

[Sean] sent in a tip about his work after seeing yesterday’s feature of a brushless gimbal being used to improve image stability with a shoulder mounted camera. That rig was designed to be used with a quadcopter, and this hacks shows why. It’s obvious from the demo footage that the gimbal — which is mounted directly to the frame of the TBS Discovery quadcopter — does a great job of keeping the image steady. The panning and tilting in directions contrary to the physics of flight make for a much more interesting video experience. Watch the inset video which is a live feed from the aircraft to the pilot. As the quadcopter makes very sharp banking turns you wouldn’t even be able to tell the pitch or roll have changed in the HQ version.

You can see a pair of images detailing the 3D printed parts and the assembled gimbal below.

[Read more...]

3D printed HOG drive

3d-printed-hog-drive

Here’s a 3D printed Hemispherical Omnidirectional Gimballed Drive system which you can make at home. That’s a mouthful which is why it is commonly referred to as a HOG drive. Never heard of one? Well you need to keep up with your Hackaday because about 20 months ago we featured this amazing robot project that uses one. The design is a tricycle orientation with the HOG drive as the only powered ‘wheel’. But it’s not really a wheel, it’s a half-sphere (a hemisphere which is not pictured above but attaches to the motor spindle) which can provide thrust in any direction depending on which way the motor is spinning a how the gimbal bracket is oriented.

Unfortunately [Dan] isn’t showing off a vehicle that is powered by the device just yet. But from what we’ve seen in the demo after the jump it is fully functional. His target project for the system is a line-following robot which we hope to post as a follow-up when he reaches that goal.

[Read more...]

Improving your flight sim experience with Hall effect sensors

hall-effect-controls

[Gene Buckle] built himself a nice custom cockpit for playing Flight Simulator, but during use he found that the gimbal he constructed for the pitch and roll controls was nearly unusable. He narrowed the problem down to the potentiometers he used to read the angle of the controls, so he set off to find a suitable and more stable replacement.

He figured that Hall effect sensors would be perfect for the job, so he picked up a pair of Allegro 1302 sensors and began fabricating his new control inputs. He mounted a small section of a pen into a bearing to use as an input shaft, attaching a small neodymium magnet to either side. Since he wanted to use these as a drop-in replacement for the pots, he had to fabricate a set of control arms to fit on the pen segments before installing them into his cockpit.

Once everything was set, he fired up his computer and started the Windows joystick calibration tool. His potentiometer-based controls used to show a constant jitter of +/- 200-400 at center, but now the utility displays a steady “0”. We consider that a pretty good result!

[Thanks, Keith]

Four-axis camera mount rides on a wire

Here’s [Badwolf's] team posing with their college project. It’s a 4-axis gimbal mount for a camera that they designed in CAD, cut parts using a laser, then milled them down to specifications. In the picture above there is a tiny point-and-shoot camera mounted inside the suspended ring but the rig’s strong enough to support cameras of any size.

That mounting ring can rotate like the hands of a clock, but it also pivots on a horizontal axis. The bracket that holds the ring can rotate on a vertical axis, and the entire assembly moves along the wire supporting it. After the break you can see some test footage that shows the rig being operated via a handheld radio controller.

This setup let’s the camera travel as far as the cable can reach. But if you want something that lets you take photographs of very tall objects you’ll need to use a different setup. [Read more...]

Machined steadicam, steadier than the rest

No, the picture above is not a store made steadicam. Rather, a CNC machined one by [Matt]. Interestingly, unlike most steadicams we’ve seen before the gimbal is not the main focus of the design though an aluminum machined gimbal would make us drool. The central idea is allowing for X and Y axis adjustment to get oddly weighted bulky camera’s exact center of gravity. [Matt's] steadicam is also designed to handle more weight than commercial versions, and (if you already have a CNC) to be much cheaper. There’s no video, but from the skill of craftsmanship we can safely assume it’s as good and level as some of the best.