Manually-Adjustable Three-Axis Gimbal

[Tim Good] built a 3-axis gimbal out of 3D-printed and machined pieces, and the resulting design is pretty sweet, with a nice black-on-black look. He machined the flat pieces because they were too long to be printed in his 3D-printer.

The various axes swivel on four bearings each, and each ring features a manual locking mechanism made out of steel stainless pins that immobilize each axis. The gimbal operation itself appears to be manual. That said, [Tim] used 12-wire slip rings to power whatever camera gets mounted on it–it looks like the central enclosure could hold a camera the size of a GoPro.

[Tim] has shared his design files on Thingiverse: it’s a complicated build with 23 different files. This complexity got us wondering: aren’t there two pitch axes?

We definitely love seeing gimbal projects here on Hackaday. A few cases in point, a gimbal-mounted quadcopter, another project with a LIDAR added to a camera gimbal, and this gimbal-mounted coffee cup.

 

 

Handheld Gimbal with Off-The-Shelf Parts

For anything involving video capture while moving, most videographers, cinematographers, and camera operators turn to a gimbal. In theory it is a simple machine, needing only three sets of bearings to allow the camera to maintain a constant position despite a shifting, moving platform. In practice it’s much more complicated, and gimbals can easily run into the thousands of dollars. While it’s possible to build one to reduce the extravagant cost, few use 100% off-the-shelf parts like [Matt]’s handheld gimbal.

[Matt]’s build was far more involved than bolting some brackets and bearings together, though. Most gimbals for filming are powered, so motors and electronics are required. Not only that, but the entire rig needs to be as balanced as possible to reduce stress on those motors. [Matt] used fishing weights to get everything calibrated, as well as an interesting PID setup.

Be sure to check out the video below to see the gimbal in action. After a lot of trial-and-error, it’s hard to tell the difference between this and a consumer-grade gimbal, and all without the use of a CNC machine or a 3D printer. Of course, if you have access to those kinds of tools, there’s no limit to the types of gimbals you can build.

Continue reading “Handheld Gimbal with Off-The-Shelf Parts”

Gimbal SDI Camera Mod

Sometimes when you need something, there is a cheap and easily obtainable product that almost fits the bill. Keyword: almost. [Micah Elizabeth Scott], also known as [scanlime], is creating a hovering camera to follow her cat around, and her Feiyu Mini3D 3-axis brushless gimbal almost did everything she’d need. After a few modifications, [Micah] now has a small and inexpensive 3-axis gimbal with a Crazyfire HZ-100P SDI camera and LIDAR-Lite distance sensor.

At thirty minutes long, [Micah’s] documenting video is rife with learning moments. We’ve said it before, and we’ll say it again: “just watch it and thank us later.” [Micah Elizabeth Scott] has a way of taking complicated concepts and processes and explaining things in a way that just makes sense (case in point: side-channel glitching) . And, while this hack isn’t exactly the most abstractly challenging, [Micah’s] natural talent as a teacher still comes through. She takes you through what goes right and what goes wrong, making sure to explain why things are wrong, and how she develops a solution.

Throughout her video, [Micah] shares small bits of wisdom gained from first-hand experience. From black hot glue to t-glase (a 3D printing filament), we learned of a few materials that could be mighty useful.

We’re no strangers to the work of [Micah Elizabeth Scott], she’s been on the scene for a while now. She’s been a Hackaday Prize Judge in 2015 and 2016 and is always making things we love to cover. She’s one of our three favorite hackers and has a beautiful website that showcases her past work.

Video after the break.

Continue reading “Gimbal SDI Camera Mod”

Simple Scanner Finds the Best WiFi Signal

Want to know which way to point your WiFi antenna to get the best signal? It’s a guessing game for most of us, but a quick build of a scanning WiFi antenna using mostly off-the-shelf components could point you in the right direction.

With saturation WiFi coverage in most places these days, optimizing your signal might seem like a pointless exercise. And indeed it seems [shawnhymel] built this more for fun than for practical reasons. Still, we can see applications where a scanning Yagi-Uda antenna would come in handy. The build started with a “WiFi divining rod” [shawnhymel] created from a simple homebrew Yagi-Uda and an ESP8266 to display the received signal strength indication (RSSI) from a specific access point. Tired of manually moving the popsicle stick and paperclip antenna, he built a two-axis scanner to swing the antenna through a complete hemisphere.

The RSSI for each point is recorded, and when the scan is complete, the antenna swings back to the strongest point. Given the antenna’s less-than-perfect directionality — [shawnhymel] traded narrow beam width for gain — we imagine the “strongest point” is somewhat subjective, but with a better antenna this could be a handy tool for site surveys, automated radio direction finding, or just mapping the RF environment of your neighborhood.

Yagi-Uda antennas and WiFi are no strangers to each other, whether it be a WiFi sniper rifle or another recycling bin Yagi.  Of course this scanner isn’t limited to WiFi. Maybe scanning a lightweight Yagi for the 2-meter band would be a great way to lock onto the local Ham repeater.

Continue reading “Simple Scanner Finds the Best WiFi Signal”

Scratch-built Camera Gimbal for Photographer with Cerebral Palsy

We so often hack for hacking’s sake, undertaking projects as a solitary pursuit simply for the challenge. So it’s nice to see hacking skills going to good use and helping someone out. Such was the case with this low-cost two-axis handheld camera gimbal intended to help a budding photographer with a motion disorder.

When [Tadej Strah] joined his school photography club, a fellow member who happens to have cerebral palsy needed help steadying cameras for clean shots. So rather than shell out a lot of money for a commercial gimbal, [Tadej] decided to build one for his friend. A few scraps of aluminum bar stock were bent into the gimbal frames and camera mount. Two hobby servos take care of the pitch and roll axes, controlled by an Arduino talking to an MPU-6050. Mounted to a handle from an angle grinder with the battery and electronics mounted below, the gimbal looks well-balanced and does a good job of keeping the camera level.

Hats off to [Tadej] for pitching in and solving a real world problem with his skills. We like to see people helping others directly, whether it’s building a gyroscopic spoon for Parkinson’s sufferers or vision enhancement for a nearly blind adventurer.

Continue reading “Scratch-built Camera Gimbal for Photographer with Cerebral Palsy”

The New York Public Library Built a Reading Railroad

What’s the best way to quickly move books from a vast underground archive to the library patrons who want to read them? For the New York Public Library (NYPL), it used to be an elaborate conveyor belt system. But the trouble with those is that the books will fall right off of them on a vertical run. What the NYPL’s gargantuan flagship library on 5th Avenue needed was a train to shuttle the books around. This week, as the majestic Rose Main Reading Room reopens after renovation, the train will leave the station.

From January to August 2016, workers retrofitted the existing conveyor belt infrastructure to support 950 feet of shiny, winding track. ‘Train’ is a bit of a misnomer because the cars travel singly. The double-track system traverses eight floors of library from the underground archive to any of the 11 designated stops. There are 24 book cars at present. Each one can hold about 30 pounds of books and travels at about 75 feet per minute.

In order to move between floors economically, some sections of track are completely vertical. How do the books stay in there? Simple—the cargo hold pivots on a gimbal. Sensors along the track make it easy to keep tabs on the cars, which are separated by a 15-second buffer to avoid collisions and mishaps. Click past the break for a sped-up demonstration. For you purists out there, we’ve also embedded the full, silent, real-time version that clocks in at nearly five minutes.

We like all kinds of trains around here, from the subterranean to the scientifically derailed.

Continue reading “The New York Public Library Built a Reading Railroad”

High-end Headphones Fixed with High-end CNC Machine

Warranty? We don’t need no stinking warranty! We’re hackers, and if you have access to a multi-million dollar CNC machine and 3D CAM software, you mill your own headphone replacement parts rather than accept a free handout from a manufacturer.

The headphones in question, Grado SR325s, are hand-built, high-end audiophile headphones, but [Huibert van Egmond] found that the gimbal holding the cups to the headband were loosening and falling out. He replicated the design of the original gimbal in CAM, generated the numeric code, and let his enormous Bridgeport milling machine loose on a big block of aluminum. The part was drilled and tapped on a small knee-mill, cut free from the backing material on a lathe, and bead-blasted to remove milling marks. A quick coat of spray paint – we’d have preferred powder coating or anodization – and the part was ready to go back on the headphones.

Sure, it’s overkill, but when you’ve got the tools, why not? And even a DIY CNC router could probably turn out a part like this – a lot slower, to be sure, but it’s still plausible.

Continue reading “High-end Headphones Fixed with High-end CNC Machine”