Hacklet 14 – Hacks Around the House

14

In this weeks Hacklet we’re looking at household hacks. Not necessarily globally connected home automation hacks, but task specific hacks that we want in our lives yesterday!

We’ve all had it happen, you’re burning the midnight oil on a project when you realize it’s garbage night. The mad dash to collect empty anti-static bags, last night’s Chinese food, and the rest of the trash before actually venturing outside in the dark.

bins2[Mehmet-cileli] doesn’t have to deal with any of that, thanks to My Bins, his automated trash and recycling can moving system. Normally the bins are stationed near the house. Each garbage night, the system springs into action. The cans and their platform pivots 90 degrees. The entire system then rolls along a track to the curb. Once the cans have been collected, everything rolls back ready for more trash. We just hope [Mehmet's] garbage men are nice enough to put the bins back on their platform!

teatimeNext we have the perfect cup of tea. [Marcel] kept forgetting his tea while it was steeping. After ending up with ink a few times, he built this Automatic Tea Timer. A button starts the timer, and after a few minutes, the tea bag is automatically lifted and a light illuminates to let you know your tea is ready. [Marcel] used a Raspberry Pi Arduino 555 simple R-C timer circuit to create his delay. The lift arm is a discarded hard drive read arm. The light bulb limits current through the voice coils.

greenhouse1[Juan Sandu] always has veggies with his Smart Small Greenhouse. [Juan] has created a desktop sized greenhouse that gives plants what they crave. No, not Brawndo, we’re talking water, warmth, and light. An Arduino Uno uses sensors to monitor humidity, temperature, light, and moisture. Based upon one of two pre-set plant types, the system determines when to water, turn on lights, or even power up a fan to keep temperatures plant friendly.  [Juan] is still working on his greenhouse, but his code is already up on Github.

 

grillupNext up is [nerwal] with his entry in The Hackaday Prize, GrillUp. GrillUp is a remote grill temperature monitoring system with a cooling spray. Up to 6 food grade thermometers provide GrillUp with its temperature data. If things are getting a bit too hot, Grillup cools the situation down by spraying water, beer, or your favorite marinade. The system is controlled over Bluetooth Low Energy from an android smart phone. A laser pointer helps to aim the water spray. Once the cooling zones are set up, the system runs automatically. It even has a sprinkler mode, where it sprays everything down.

led-lightsEvery hacker’s house needs some Sci-fi mood lights, right? [spetku and maehem] round out this weeks Hacklet with their Fifth Element Stone Mood Lighting. Originally an entry in the Hackaday Sci-fi contest, these mood lights are based on the elemental stones in everyone’s favorite Bruce Willis movie. The lights are 3D printed in sections which stack over foamboard cores. The actual light comes from a trio of RGB LEDs. LED control is from the same brain board which controls the team’s Robot Army. The lights are designed to open up just like the ones in the movie, though fire, earth, wind, and water are not required. The servos [spetku and maehem] selected weren’t quite up to the task, but they mention this will be remedied in a future revision.

That’s a wrap for this week’s Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

Solar Powered DIY Plant Watering System

Solar Powered Watering System

It’s great having fresh vegetables just a few steps away from the kitchen, but it takes work to keep those plants healthy. [Pierre] found this out the hard way after returning from vacation to find his tomato plant withering away. He decided to put an end to this problem by building his own solar-powered plant watering system (page in French, Google translation).

An Arduino serves as the brain of the system. It’s programmed to check a photo resistor every ten minutes. At 8:30PM, the Arduino will decide how much to water the plants based on the amount of sunlight it detected throughout the day. This allows the system to water the plants just the right amount. The watering is performed by triggering a 5V relay, which switches on a swimming pool pump.

[Pierre] obviously wanted a “green” green house, so he is powering the system using sunlight. A 55 watt solar panel recharges a 12V lead acid battery. The power from the battery is stepped down to the appropriate 5V required for the Arduino. Now [Pierre] can power his watering system from the very same energy source that his plants use to grow.

Red Bull Creation: i3 Detroit

If there’s one thing I learned about Detroit last weekend, it’s that it is freaking huge. It’s an unbelievably large city, and looking at the population numbers, you can really start to see the problem of providing city services to such a large area. With such a sparse population, it’s the ideal environment for experimentations in urban farming, after a few seasons of planting crops that will leech everything out of the soil of course.

If you have a farm, you’re going to need some means of irrigation, and you might as well throw a scarecrow in there as well, giving i3 Detroit the idea for RoboCrop, the perfect project for an urban farm or anyone who is putting on a production of The Wizard Of Oz but is a little shorthanded for a full cast.

RoboCrop is an all-in-one irrigation and bird and small mammal scaring device, controllable with webcam video streamed right to the remote. It’s a fun project, and fits right into the apparent unofficial “urban gardening” theme of this year’s Red Bull Creation.

i3 is also the largest and arguably the best equipped hackerspace in the Detroit region. They were kind enough to let us throw a little get together there last weekend where we gave away a 3D printer for The Hackaday Prize. Good times all around. We’ll have a video tour of i3 up a little bit later.

Fully automated watering robot takes a big leap forward toward greenhouse automation

aquarius_robot

Greenhouse owners might find [David Dorhout]’s latest invention a groundbreaking green revolution! [David]’s Aquarius robot automates the laborious process of precision watering 90,000 square feet of potted plants. Imagine a recliner sized Roomba with a 30 gallon water tank autonomously roaming around your greenhouse performing 24×7 watering chores with absolute perfection. The Aquarius robot can do it all with three easy setups; add lines up and down the aisles on the floor for the robot to follow, set its dial to the size of your pots and maybe add a few soil moisture sensors if you want the perfect amount of water dispensed in each pot. The options include adding soil moisture sensors only between different sized plants letting Aquarius repeat the dispensing level required by the first plant’s moisture sensor for a given series.

After also digging through a pair of forum posts we learned that the bot is controlled by two Parallax propeller chips and has enough autonomous coding to open and close doors, find charging stations, fill its 30 gal water tank when low, and remember exactly where it left off between pit stops. We think dialing in the pot size could easily be eliminated using RFID pot identification tags similar in fashion to the Science Fair Sorting Project. Adjusting for plant and pot size as well as location might easily be automated using a vision system such as the featured Pixy a few weeks back. Finally, here are some featured hardware hacks for soil moisture sensing that could be incorporated into Aquarius to help remotely monitor and attend to just the plants that need attention: [Andy's] Garden sensors, [Clover's] Moisture control for a DIY greenhouse, [Ken_S's] GardenMon(itoring project)

[David Dorhout] has 14 years experience in the agriculture and biotech industry. He has a unique talent applying his mad scientist technology to save the future of mankind as seen with his earlier Prospero robot farmer. You can learn more about Aquarius’s features on Dorhout R&D website or watch the video embedded below.

[Read more...]

Large-scale Arduino controlled greenhouse does some serious farming

[Instrument Tek] isn’t messing around with a hobby-sized greenhouse. In fact if it were any bigger we’d call it a commercial operation. But what interests us is the professional-quality greenhouse automation he built around and Arduino board.

The greenhouse is about what you’d expect to see at a nursery, except the footprint is somewhere around 10’x10′. It’s a stick-built frame with walls made of poly. Professional greenhouses monitor and regulate temperature and humidity and this one does just that. The video after the break starts off by showing the controller box. It has temperature, humidity, and light sensors that allow the Arduino to judge growing conditions. If it gets too hot, some slats are opened and a fan exhausts air from the structure. If it gets to cold, a series of light fixtures are energized. They contain heat lamps, as this setup is in northern Alberta, Canada and it can get quite cold some nights. The drip system is also automated, with a solenoid to turn water on and off.

In addition to that 3:26 show-and-tell, we’ve embedded a 27-minute video that shows how to build the controller box. So you can start you plants indoors on the rack, then populate the greenhouse when they get large enough.

[Read more...]

Hot dirt keeps your plants happy in the winter months

[Craig] tried heating his greenhouse last winter, but really only managed to push the limits of his utility bills. This time around he took a different approach by building a system to warm the soil in which his vegetation is planted.

The core of the system is this box which houses the plants. It is lined with heating tape along the bottom which warms a layer of dirt. The plants are in pots, but since those are surrounded by the dirt it doesn’t really inhibit the warming properties of the soil. The controller takes into account the temperature inside the box, as well as ambient temperature in the greenhouse. When it’s a bit too cold the controller will close the lid, which is covered with translucent plastic. This makes sure the temperature around the plants won’t fall below about 41.5 degrees Fahrenheit.

This really takes the work out of caring for you plants in the winter. What would have been a multiple-times-per-day visit can be limited to every day or two. Now he just needs to expand this to regulate temperature and humidity in the greenhouse itself, kind of like this other hack.

Moisture control for a DIY greenhouse

greenhouse_moisture_controller

[Clover] loves plant biology, and tends a small garden while she is at home during breaks from college. She says that her family is notoriously unreliable when it comes to caring for plants, so she decided to construct a greenhouse to ensure that her garden will still be around the next time she comes home.

With her raised bed garden built and her seeds planted, she started work on the greenhouse itself, which was constructed using PVC pipe and clear plastic sheeting. Satisfied with how the structure came out, she focused on the greenhouse’s watering system and moisture sensors. The watering system uses solenoids that are connected to a pair of Arduino regulated relays. The Arduino uses moisture sensors constructed from nails, triggering the water flow when things get too dry.

The controller along with its LCD status panel was mounted inside a bird house to protect it from the elements while keeping in line with the house’s decor. [Clover] seems pretty happy with the build, but we suspect she will be adding some temperature and regulation at some point, to facilitate longer growing cycles.

Check out the video below for a quick tour of her setup.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,382 other followers