Relive the Hackaday Belgrade Conference

The Hackaday Belgrade Conference was an amazing success. For proof, you need look no farther than the slate of talks that we have been publishing over that past several weeks. Each looks at different angles of the hardware universe; what does it mean to create hardware, where have we been, where are we going, and where does inspiration for the next great design come from?

The talks have now all been published and collected into one video playlist; it was an intense day of talks all caught in one streaming frenzy. But if you can’t make it through in one sitting, I’ve also listed the individual talks after the break so you that you may pick and choose.

There are, however, two talks that have just been published this afternoon. These are the opening remarks presented by Aleksandar Bradic and the closing remarks which I presented. When we meet people we’re often asked about what is going on behind the scenes. It’s really easy to think that nobody cares about what it takes to pull together a conference, run an amazing engineering challenge, or how we decide what we think matters when looking to the future. Alek covers the back story of how Supplyframe and Hackaday came together, as well as what led us to choose Belgrade for this conference. I discuss what I think is a core virtue of Hackaday; the free and open sharing of information and ideas. It’s a concept I believe in, and the most noble of reasons for documenting your work so that others may build upon your knowledge and skill.

Hackaday | Belgrade went beyond what we even considered possible. It joins the 2016 SuperConference (whose talk videos have also been published) as a shining example of our strong, active, and engaged community who want to spend their time enabling everyone — hackers, designers, and engineers alike — to succeed.

Continue reading “Relive the Hackaday Belgrade Conference”

Evolving Storytelling to Marry the Ancient Skills with the Digital Age

Storytelling is an art. It stretches back to the dawn of man. It engages people on an emotional level and engages their mind. Paulina Greta Stefanovic, a user experience researcher and interaction designer is on the cutting edge of bringing our technology together with the best human aspects of this long tradition.

The information age is threatening storytelling — not making it extinct, but reducing the number of people who themselves are storytellers. We are no longer reliant on people in our close social circles to be exquisite story tellers for our own enjoyment; we have the luxury (perhaps curse?) of mass market story-telling.

Paulina’s work unlocks interactive storytelling. The idea isn’t new, as great storytellers have always read their audience and played to their engagement. Interactive storytelling in the digital age seeks to design this skill into the technology that is delivering the story. This is a return from passive entertainment.

This breaks down into interactive versus responsive. At its simplest, think of responsive as a video that has a pause button. You can change the flow of the story but you can’t make the story your own. Surprisingly, this is a new development as the ability to pause playback is but a few decades old. So you can pause a responsive medium, but true interactive experiences involve creation — the audience is immersed in the story and can make substantive changes to the outcome during the experience.

This equates to a power transfer. The creator of the media is no longer in complete control, ceding some to the audience. We are just at the start of this technology and it looks like the sky is the limit on what we can do with algorithmic interactions.

Video games are the forerunners of this change. They already have branching stories that let the users make choices that greatly affect the storyline. This industry is huge and it seems obvious that this active aspect of story consumption is a big part of that success. Even more intriguing is a “drama management system” (a new term to me but I love it) that results in a story whose ending nobody knows until this particular audience gets there. What a concept, and something I can’t wait to see for myself!

If you find these concepts as interesting as I do, check out Paulina’s talk below, which she presented at the Hackaday Belgrade conference.

Navid Gornall Eats His Own Face

Navid Gornall is a creative technologist at a London advertising agency, which means that he gets to play with cool toys and make movies. That also means that he spends his every working hour trying to explain tech to non-technical audiences. Which is why he was so clearly happy to give a talk to the audience of hardware nerds at the Hackaday Belgrade conference.

After a whirlwind pastiche of the projects he’s been working on for the last year and a half, with tantalizing views of delta printers, dancing-flame grills, and strange juxtapositions of heat sinks and food products, he got down to details. What followed was half tech show-and-tell, and half peering behind the curtain at the naked advertising industry. You can read our writeup of the highlights after the video below.

Continue reading “Navid Gornall Eats His Own Face”

Reinventing VHDL Badly

A few years ago, Philip Peter started a little pet project. He wanted to build his own processor. This really isn’t out of the ordinary – every few months you’ll find someone with a new project to build a CPU out of relays, logic chips, or bare transistors. Philip is a software developer, though, and while the techniques and theory of building hardware haven’t changed much in decades, software development has made leaps and bounds in just the past few years. He’s on a quest to build a CPU out of discrete components.

Search the Internet for some tips and tricks for schematic capture programs like KiCad and Eagle, and you’ll find some terrible design choices. If you want more than one copy of a very specific circuit on your board, you have to copy and paste. Circuit simulation is completely separate from schematic capture and PCB design, and unit testing – making sure the circuit you designed does what it’s supposed to do – is a completely foreign concept. Schematic capture and EDA suites are decades behind the curve compared to even the most minimal software IDE. That’s where Philip comes in. By his own admission, he reinvented VHDL badly, but he does have a few ideas that are worth listening to.

Continue reading “Reinventing VHDL Badly”

Phoenix Perry: Forward Futures

There were a lot of very technical talks at Hackaday Belgrade. That’s no surprise, this is Hackaday after all. But every once in a while it’s good to lift our heads up from the bench, blow away some of the solder smoke, and remind ourselves of the reason that we’re working on the next cool project. Try to take in the big picture. Why are you hacking?

image5[Phoenix Perry] raised a lot of big-think points in her talk, and she’s definitely hacking in order to bring more women into the field and make the creation of technology more accessible to everyone. Lofty goals, and not a project that’s going to be finished up this weekend. But if you’re going to make a positive difference in the world through what you love to do, it’s good to dream big and keep the large goal on your mind.

[Phoenix] is an engineer by training, game-coder by avocation, and a teacher for all the right reasons. She’s led a number of great workshops around the intersection of art and technology: from physical controllers for self-coded games to interactive music synthesis devices disguised as room-sized geodesic domes. And she is the founder of the Code Liberation Foundation, a foundation aimed at teaching women technology through game coding. On one hand, she’s a hacker, but on the other she’s got her eyes on a larger social goal.

Continue reading “Phoenix Perry: Forward Futures”

Mike Szczys Ends 8-Bit vs 32-Bit Holy War!

If you’ve read through the comments on Hackaday, you’ve doubtless felt the fires of one of our classic flame-wars. Any project done with a 32-bit chip could have been done on something smaller and cheaper, if only the developer weren’t so lazy. And any project that’s squeezes the last cycles of performance out of an 8-bit processor could have been done faster and more appropriately with a 32-bit chip.

bits_argument

Of course, the reality for any given project is between these two comic-book extremes. There’s a range of capabilities in both camps. (And of course, there are 16-bit chips…) The 32-bit chips tend to have richer peripherals and run at higher speeds — anything you can do with an 8-bitter can be done with its fancier cousin. Conversely, comparatively few microcontroller applications outgrow even the cheapest 8-bitters out there. So, which to choose, and when?

Eight Bits are Great Bits

The case that [Mike] makes for an 8-bit microcontroller is that it’s masterable because it’s a limited playground. It’s a lot easier to get through the whole toolchain because it’s a lot shorter. In terms of debugging, there’s (often) a lot less that can go wrong, letting you learn the easy debugging lessons first before moving on to the truly devilish. You can understand the hardware peripherals because they’re limited.

And then there’s the datasheets. The datasheet for a chip like the Atmel ATMega168 is not something you’d want to print out, at around 660 pages long. But it’s complete. [Mike] contrasts with the STM32F405 which has a datasheet that’s only 200 pages long, but that’s just going over the functions in principle. To actually get down to the registers, you need to look at the programming manual, which is 1,731 pages long. (And that doesn’t even cover the various support libraries that you might want to use, which add even more to the documentation burden.) The point is, simpler is simpler. And if you’re getting started, simpler is better.

Continue reading “Mike Szczys Ends 8-Bit vs 32-Bit Holy War!”

Designing a High Performance Parallel Personal Cluster

Kristina Kapanova is a PhD student at the Bulgarian Academy of Sciences. Her research is taking her to simulations of quantum effects in semiconductor devices, but this field of study requires a supercomputer for billions of calculations. The college had a proper supercomputer, and was getting a new one, but for a while, Kristina and her fellow ramen-eating colleagues were without a big box of computing. To solve this problem, Kristina built her own supercomputer from off-the-shelf ARM boards.

Continue reading “Designing a High Performance Parallel Personal Cluster”