Hackaday.io Passes 200,000 Registered Users

Hackaday.io just welcomed the 200,000th registered user! We are the world’s largest repository of open hardware projects and Hackaday.io is proving its worth as the world’s most vibrant technology community. This is where you go to get inspiration for your next project, to get help fleshing out your product ideas, to build your engineering dream team, and to tell the tales of the workbench whether that be success, failure, or anything in between.

Over the past six months, as we’ve grown from the 150k member milestone to this one, our movement has enjoyed ever-increasing interaction among this amazing group of people. Thank you for spending so much time here and making Hackaday.io a great place for everyone!

Hack Chat Bring Experts from Many Fields

bunnie03-01It’s always great when you can watch a conference talk or interview online. But if you weren’t there in person the opportunity for meaningful interaction has already passed. With this in mind, we’ve been inviting experts from numerous fields to host discussions live in the Hackaday.io Hack Chat room.

This is a great way to further our goal of forming a global virtual hackerspace. It’s common to have talks and workshops at a hackerspace, where you can not only learn from and ask questions of the person leading the event, but meet others who share your interests. This has happened time and again with recent guests including Bunnie Huang who talked about making and breaking hardware, a group of Adafruit engineers who discussed their work extending the MicroPython libraries, Sprite_tm who covered the continuing development of ESP32 support, and many more.

This Friday at Noon PST Hackaday’s own Jenny List will be leading the Hack Chat on RF Product design. See you there!

Amazing Projects

It’s pretty amazing to see a guide on building a smartphone for $50 in parts. If that exists anywhere, it’s probably on Hackaday.io — and it’s actually pushing about 80,000 views so far! Arsenijs is a regular around these parts and his ZeroPhone — a 2G communications device based on the Raspberry Pi Zero — is a project that he’s been updating as his prototype-to-production journey progresses. It has a big team behind it and we can’t wait to see where this one goes.

zerophone-thumbWorking on your own is still a great way to learn and we see all kinds of examples of that. Just4Fun is learning the dark arts that went into early personal computing with a $4 project to build a Z80 system on a breadboard.

We revel in the joy of seeing great hardware art come to life. FlipFrame is a great example; it’s a digital picture frame project that goes far beyond that simple description. It rotates the entire screen to fit the layout of the image while showing off all of the hardware that makes this possible rather than hiding it away inside a case.

In addition to our registered users milestone, we’re just about to pass our 20,000th published project. There are so many projects to celebrate and draw inspiration from, and that collection grows every day!

The Rise of Build Contests

This winter we’ve seen a ton of interest in the build contests hosted on Hackaday.io. Of course, nothing can compare to the reach of the Hackaday Prize, our worldwide engineering initiative that challenges people to Build Something That Matters. The 2016 winners were announced in November; even so, people have been tripping over themselves to get a project built for the numerous contests we’ve hosted since then.

enlightenpiOf note is the 1 kB Challenge — a contest dreamed up by our own Adam Fabio which challenged entrants to build an embedded project whose compiled code was 1 kB or less. It was a joy to dive into the entries for this and it will certainly return again.

Running right now is the revival of my favorite build contest: the Hackaday Sci-Fi Contest. Bring your favorite Sci-Fi tech to life — it just needs to be recognizable from a book, movie, or TV show and include some type of electronics.

Meet Your Friends in Real Life

Some of my closest friends in life were first met online. But eventually, you just want to hang out in the same room. This is becoming more and more common with Hackaday.io. In November we celebrated our second Hackaday SuperConferece where hundreds of people who love hardware creation gathered in Los Angeles for two days of amazing talks, workshops, and hands-on hacking challenges. This is a good one to add to your calendar but tickets do sell out so consider some other options.

We have regular meetups in LA and New York. If you are ever traveling there, make sure to look up the schedule and see if it can be part of your trip. Perhaps the most interesting was World Create Day. In 2016, we had 80 groups across the world plan meetups on the same day so that the Hackaday community could hang out in real life. We’re not ready to share the details quite yet, but you should plan for that to happen again this year. Something to look forward to!

Friday Hack Chat: Making and Breaking Hardware with Bunnie

bunnie03-01This Friday, February 10th, at 9am PST, Hackaday.io will be graced with one of the greatest hardware creators in recent memory. [Bunnie Huang] will be talking about making and breaking hardware in the Hackaday.io Hack Chat.

[Bunnie] is a nearly peerless hardware hacker. He literally wrote the book on hacking the XBox, developed the Chumby, and developed the Novena, an open source Laptop. He’s torn down the Form 2 3D printer, explored the iPhone’s hackability with [Edward Snowden], wrote the book you want to have on your carryon when flying into Hong Kong, and recently released The Hardware Hacker, a retelling of his adventures in hardware hacking. He’s now working on the Love to Code platform.

[Bunnie] is a bridge across worlds. There is no one else so deeply embedded in the world of electronics manufacturing that is also willing to tell the world about what he’s found. If you want to learn about electronics, the Bunnie Studios blog is a mandatory read.

For this week’s Hack Chat, [Bunnie] will be taking questions from the Hackaday.io community. If you’ve ever wanted to know what it takes to build a few thousand things, this is the guy to ask.

Having trouble figuring out when 09:00 PST is in your local time zone? Here’s a countdown timer!

Here’s How To Take Part:

Buttons to join the project and enter the Hack Chat
Buttons to join the project and enter the Hack Chat

Our Hack Chats are live community events on Hackaday.io Hack Chat group messaging. Log into Hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

Upcoming Hack Chats

These Hack Chats are a weekly thing, and we have a few more on the books. Next week, we’ll be covering RF design with [Jenny List], and later going over mechanical manufacturing with Fictiv. You can check out all the upcoming Hack Chats on this project.

Hack Chat: The Incredible Sprite_tm and The ESP32

This Friday at 5pm PST, [Sprite_tm] will be leading a Hack Chat talking about the ESP32.

[Sprite_tm] should require no introduction, but we’re going to do it anyway. He’s can install Linux on a hard drive. He can play video games on his keyboard. He built the world’s tiniest Game Boy, and gave the greatest talk I’ve ever seen. Right now, [Sprite] is in China working on the guts of the ESP32, the next great WiFi and Bluetooth uberchip.

[Sprite] recently packed his bags and headed over to Espressif, creators of the ESP32. He’s one of the main devs over there, and he’s up to his neck in the varied and weird peripherals contained in this chip. His job includes porting NES emulators to a WiFi-enabled microcontroller. If you want to learn about the latest and greatest microcontroller, this is the guy you want to talk to, and he’s taking all questions.

Note that we usually do these things earlier in the day but this week we start rolling at 5 PM Pacific Friday to help match up with [Sprite’s] timezone. You can figure out when this event will happen with this handy time and date converter.

Here’s How To Take Part:

Buttons to join the project and enter the Hack Chat
Buttons to join the project and enter the Hack Chat

Our Hack Chats are live community events on the Hackaday.io Hack Chat group messaging. Log into hackaday.io, visit that page, and look for the ‘Join this Project’ Button. Once you’re part of the project, the button will change to ‘Team Messaging’, which takes you directly to the Hack Chat.

You don’t have to wait until Friday; join whenever you want and you can see what the community is talking about.

And Tindie Too

In addition to [Sprite]’s Hack Chat on Friday, we’re going to have a Tindie Chat in the Tindie Dog Park on Friday at noon, Pacific time. You can figure out when that’ll be in your local time by following this link.

In the Tindie Chat, we’re going to be talking about all the aspects of selling hardware on Tindie. This is a phenomenal community that keeps on growing, and right now there’s some really, really cool hardware being offered up from makers and creators around the world.

Upcoming Hack Chats

We have a few more Hack Chats on the books. On February 10th, we’ll be talking RF with [Jenny List]. Sparkfun will be around for a Hack Chat on February 17th. If stats are your thing, we’ll have a chat on the ins and outs of R in a few weeks.

These Five Hackaday.io Members Just Won Fancy New CircuitPython Boards

Just a few hours ago, we had a HackChat over on Hackaday.io with Adafruit discussing CircuitPython, their new extension to the MicroPython codebase. During the chat, the folks at Adafruit took questions and asked participants in the chat what they’d like to build with some cool new hardware. These CircuitPlayground M0 Express boards are brand new, unreleased hardware. Really cool stuff.

The winners of these unreleased boards, and the projects they’ll be using them for are: [RaidDude8] for a light painting system, [gelatinousslime] for a ‘magic wand’ for his daughter that reacts to gestures, [Neon22] for a multiuser game using Neopixels, [turbinenreiter] for a gravity demonstrator using Neopixels and the accelerometer, and [todbot] for a Powermate knob USB HID clone.

During the chat, The folks at Adafruit talked about their additions to MicroPython. It’s a rework of the API, provides better support for more platforms, and extends the entire thing to microcontrollers.  If you like Python and want to get into microcontrollers, this one is for you.

If you missed the chat, you can still check out Adafruit’s live stream right here, or the transcript right here. Below, you can check out Lady Ada awarding the new boards after the break.

We have a few more HackChats coming up in the next few weeks, one with [Sprite_TM], inevitably discussing why he won’t do a crowdfunding campaign for his tiny, tiny Game Boy, an RF talk with [Jenny List], and a chat with Sparkfun. You can check out the upcoming HackChats here. Want to get in on the action? Request to join the HackChat and you’re in.

Continue reading “These Five Hackaday.io Members Just Won Fancy New CircuitPython Boards”

PURE Modules Aim to Make Prototyping Easier

[Sashi]’s PURE modules system wants your next wireless microcontroller and sensor module project to be put together using card-edge connectors. But it’s a lot deeper than that — PURE is an entire wireless gadget development ecosystem. Striking a balance between completeness and modularity is very difficult; a wire can carry any imaginable electronic signal, but just handing someone a pile of wires presents them a steep learning curve. PURE is at the other end of the spectrum: everything is specified.

So far, two microcontroller options are available in the system, the nRF52 series and TI’s CC2650. Both of these run the Contiki OS, so it doesn’t matter which of these you choose. Wired data is all transmitted over I2C and connects up via the previously-mentioned card-edge connectors. On the wireless side, data transport is handled through an MQTT broker, using the MQTT-sn variant which is better suited to small radio devices. At the protocol layer everything uses Protocol Buffers, Google’s newest idea for adding some structure to the data.

Continue reading “PURE Modules Aim to Make Prototyping Easier”

Parametric 3D Printable Wheels And Treads

When it comes to robotic platforms, there is one constant problem: wheels. Wheels have infinite variety for every purpose imaginable, but if you buy a wheeled robotic chassis you have exactly one choice. Even if you go down to the local Horror Freight, there’s only about five or six different wheels available, all of which will quickly disintegrate.

To solve this problem, [Audrey] created OpenWheel, a system of parametric, 3D-printable wheels, tweels, tires, and tracks for robotics and more.

Like all good parametric 3D-printable designs, OpenWheel is written in OpenSCAD. These aren’t 3D designs; they’re code that compiles into printable objects, with variables to set the radius, thickness, diameter of the axle, bolt pattern, and everything else that goes into the shape of a wheel.

Included in this toolset are a mess of wheels and gears that can be assembled into a drivetrain. 3D-printable track that can be printed out of a flexible filament for something has been almost unobtanium until now: completely configurable 3D-printable tank treads. All we need now is a 3D-printable tank transmission, and we’ll finally have a complete hobby robotics chassis.

DIYing A Raspberry Pi Power Bank

Over the last decade or so, battery technology has improved massively. While those lithium cells have enabled thin, powerful smartphones and quadcopters, [patrick] thought it would be a good idea to do something a little simpler. He built a USB power bank with an 18650 cell. While it would be easier to simply buy a USB power bank, that’s not really the point, is it?

This project is the follow-up to one of [patrick]’s earlier projects, a battery backup for the Raspberry Pi. This earlier project used an 14500 cell and an MSP430 microcontroller to shut the Pi down gracefully when the battery was nearing depletion.

While the original project worked well with the low power consumption Pi Model A and Pi Zero, it struggled with UPS duties on the higher power Pi 3. [patrick] upgraded the cell and changed the electronics to provide enough current to keep a high-power Pi on even at 100% CPU load.

The end result is a USB power bank that’s able to keep a Raspberry Pi alive for a few hours and stays relatively cool.