The Almost Useful Machine

[Alex] is no stranger to making machines of negligible utility. A few years ago he made the Almost Useless Machine, a solar-powered system that cuts through a 20mm dowel rod while you wait (and wait, and wait). Enamored by the internet’s bevy of powered hacksaws, he sought to build a sturdier version that’s a little more useful. Approximately five months of free time later, he had the Almost Useful Machine.

It runs on a wiper motor and a recycled power supply from a notebook computer. [Alex] rolled his own board for controlling the motor with an ATtiny25. The circuit turns potentiometer movement into PWM, which controls the motor through a MOSFET. After the cut is finished, an endstop microswitch  immediately cuts the motor.

Every bit of the chassis is aluminum that [Alex] machined by hand. Don’t have that kind of setup? How about a powered hacksaw with a 3D-printed linkage? Make the jump to see it in action, and stick around for the two-part time-lapse build video.

Continue reading “The Almost Useful Machine”

3D Printed Linkage Produces Automatic Hacksaw!

The more tools you have the better. Unfortunately, not everyone has the space, or the money for full-size equipment. Looking to expand his maker capabilities, [Bruno] had the clever idea to turn a hand-tool, into a power tool. One we’ve never even seen before — a powered hacksaw.

Using his 3D printer he designed a linkage system, not unlike a steam locomotive drive to turn rotary motion from a geared motor into linear motion. Not only that, it also angles the hacksaw as it goes. 3D printed brackets hold the hacksaw in place, and weight can be added to the top to adjust the cutting speed. He even 3D printed a guide for his vice to line up the material to where the blade will cut.

It’s a bit slow, but it’s fantastic at making cuts! Continue reading “3D Printed Linkage Produces Automatic Hacksaw!”

Hack some Picks


You know you can make your own lock picks out of cheapo carbon steel hacksaw blades, right? So what if you’ve tripped over this hack on every website that also tells you to read and worship the MIT Guide to Lock Picking; ’tis the season to pick up a new hobby now that many of us have some extra holiday free time. Unlike the authentic hand-crafted macrame indoor hanging vertical tomato garden you bought for that girl you’re trying to impress, hacksaw blades won’t cut into your purchasing power. Also, believe it or not, although we have thirteen picking hacks that are sitting in the “lockpicking” category, this isn’t one of them.

Though the guide chose to use existing picks as a template, there are plenty you can find online. After tracing the pick, the next step is to secure the hacksaw blade and carve out the excess with a rotary tool, then grind down the edges to remove any sharp bits. We recommend that you’re careful not to get the blade too hot here or you’ll alter its crystalline structure: perhaps one of our blacksmith-savvy readers can better explain what you should aim for and avoid when working with carbon steel. As usual, wear the necessary safety headgear: your eyes are valuable and you’ll need them to watch the video after the break.

What do you think? Should we make an effort at reviving the Lock Picking category? We know a lot of hackerspaces have lock picking events if you want to get into the dark art. Help us get things rolling by sending in tips recapping those events, as well as anything else that fits this theme.

Continue reading “Hack some Picks”

Hacked ARM dev board gives you two for the price of one!

[Matt Evans] took a closer look at the popular (and cheap) STM32F0 Discovery development board and realized he could get a second board out of the deal.

The Discovery board is designed to advertise ST Microntroller’s STM32F0 microchip; which with 8k RAM, 64K Flash, a bunch of peripherals,  48MHz clock, and a low price is a great chip. Though, they needed a way to program the STM32F0. To do this they added a second, more powerful, chip to the board as an interface. The STM32F103, with 20k RAM, 64K flash, and a 72MHz clock speed. [Matt] summoned genius, and simply sawed the board in half using a hacksaw.

Of course the caveat to all this is that you need a working Discovery board, or at least a working ST-LINK programmer, at the end of the day, to get any use out of your creation. Since the boards are so cheap though, it shouldn’t be a problem to buy two.