SNES Headphones Cry for Bluetooth Has Been Answered

A year and a half ago we ran a post about a SNES controller modified into a pair of headphones. They were certainly nice looking and creative headphones but the buttons, although present, were not functional. The title of the original post was (maybe antagonistically) called: ‘SNES Headphones Scream Out For Bluetooth Control‘.

Well, headphone modder [lyberty5] is back with a vengeance. He has heeded the call by building revision 2 of his SNES headphones… and guess what, they are indeed Bluetooth! Not only that, the A, B, X and Y buttons are functional this time around and have been wired up to the controls on the donor Bluetooth module.

To get this project started, the SNES controller was taken apart and the plastic housing was cut up to separate the two rounded sides. A cardboard form was glued in place so that epoxy putty could be roughly formed in order to make each part completely round. Once cured, the putty was sanded and imperfections filled with auto body filler. Holes were drilled for mounting to the headband and a slot was made for the Bluetooth modules’ USB port so the headphone can be charged. The headphones were then reassembled after a quick coat of paint in Nintendo Grey. We must say that these things look great.

If you’d like to make your own set of SNES Bluetooth Headphones, check out the build video after the break.

Continue reading “SNES Headphones Cry for Bluetooth Has Been Answered”

Wireless Helmet Speakers Receive A+ For Distracting Wearer

What could be better than cruising around town on your fave scooter? Cruising around town on your fave scooter listening to some cool tunes, of course! [sswanton] was enrolled in an Industrial Design course and was tasked with creating a wireless radio project for a specific user (of his choice). He decided to add some wireless speakers to a motorcycle helmet and design a handlebar-mounted radio.

Helmet Radio[sswanton] started out by disassembling the ultra-inexpensive, old-school, battery-powered Sony ICF-S22 radio specified by the class. The stock case was discarded as he would have to make a new one that fits onto the bike’s handlebars. Plywood makes up majority of the frame while the cover is black acrylic. Getting the acrylic bent required heating to 160 degrees so that it could be bent around a form [sswanton] created specifically for this project. A few cutouts in the case allows the rider to access the volume and tuning knobs.

The speakers added to the helmet were from wireless headphones and came with a matched transmitter. The transmitter was removed from it’s unnecessarily large case, installed in the radio’s newly created enclosure and connected to the radio’s headphone output. Situating the headphone components in the ideal locations of the helmet required that the headphones be disassembled. The speakers were placed in the helmets ear cups. Part of the original headphone case and some control buttons were mounted on the outside of the helmet for easy access. The wires connecting the components had to be extended to reconnect the now spread-out parts.

In order to hear that sweet music all the rider needs to do is turn on the headphones and radio. Check this out to see some more helmet speakers, this time a little more wacky.

DIY USB Stereo Headphone Amplifier

The biggest and best audiophile projects are usually huge tube amps, monstrous speaker cab builds, or something else equally impressive. It doesn’t always have to be that way, though, as [lowderd] demonstrates with a tiny DIY USB DAC build that turns a USB port into a headphone output.

In the Bad Old Days™ putting a DAC on a USB bus would require some rather fancy hardware and a good amount of skill. These days, you can just buy a single chip USB stereo DAC that still has very good specs. [lowderd] used the TI PCM2707 USB DAC, a chip that identifies as a USB Audio Class 1.0 device, so no drivers are needed for it to work in either Windows or OS X.

The circuit fits on a tiny PCB with a USB port on one side, a headphone jack on the other, and the chip and all related components in between. There are some pins on the chip that allow for volume, play/pause. and skip, but these pins were left unconnected for sake of simplicity.

The board was fabbed up at OSH Park, and the second revision of the case laser cut out of bamboo and acrylic by Ponoko. It’s a great looking little box, and something that fits right inside [lowderd]’s headphone case.

Adding Bluetooth And A Lightning Connector To Beats Pro Headphones

Beats

Not wanting to wait for Apple to step up their game and complete their purchase of Beats headphones, [Carnivore] decided he wanted his own pair of Apple-compatible Beats cans with Bluetooth. He created something that will probably be for sale in the Apple store come Christmas: a pair of Beats Pro headphones with Bluetooth and a Lightning connector for charging.

[Carnivore] liked the sound of his Beats Pro headphones but hated the wires. After disassembling the headphones, he carefully rewired the speakers with smaller gauge wire, added a small Bluetooth module and battery, and sealed everything back up.

There are a few interesting bits to this build – by getting rid of all external wires, [Carnivore] was left with a few holes in the headphones. These were a perfect place to add a 3D printed mount for the power button and the Lightning adapter taken from an Apple Lightning extension connector.

Thanks [Tony] for the tip!

Block Noise, Listen To Music

Noise Blocking headphones made from industrial earmuffs

Noise-Cancelling Headphones actively cancel external sounds so the listener can hear their media without distraction. They do this by taking external sound waves from an on-board microphone, inverting the audio signal and mixing that with the media audio. The outside sounds and their inverses cancel each other out before reaching the listener’s ears. There is one downside to these types of noise-cancelling headphones, they are very expensive.

[Mike] works in a wood shop and didn’t want to pony up the hundreds of dollars it would cost for a pair of noise-cancelling headphones, let alone having such an expensive electronic device in a dusty workshop. The solution? Make some headphones that will block out the noise but still allow the comfortable listening of music. This project is simple but effective; inexpensive headphones taken apart and installed in a pair of Industrial Ear Muffs. If you’d like to make your own, [Mike] gives step by step on the above link.

Continue reading “Block Noise, Listen To Music”

Tube Headphones Rock Out While Keeping the Family Peace

tubeHeadphones

It’s hard being a kid sometimes. [Young] likes his music, but his dad is an overnight trucker. With his dad sleeping during the day, [Young] has to keep the volume down to a reasonable level. He could have bought some commercial headphones, but he wanted something a bit more customized. Rather than give up on his tunes, he built a pair of headphones with an internal tube preamp amplifier. [German language link — Google translate doesn’t want to work with this one but Chrome’s translate feature works].

Two 1SH24B preamp tubes feed two LM386 amplifier chips, creating a hybrid amplifier. The 1SH24B tubes are designed to work on battery voltage, so a step up circuit wasn’t necessary. However, [Young] still needed to provide an 8 cell battery pack to run his amp. Speakers were a 3 way coaxial of [Young’s] own design. He built the headphone frame using candy tins and cups from commercial headphones. A final touch was a window so everyone can see all that vacuum state goodness.  Considering that [Young] is only 16, we’re looking for some great things from him in the future.

If you don’t want to strap the tubes to your skull there are other options. But you have to admit it makes for a cool look. Starbucks here we come.

[Thanks Patrick]

Repairing Bose Active Noise Cancelling Headphones

[Mansour] was disappointed to find out that his Bose QC15 headphones had a dead right channel. These headphones have active noise cancelling, which uses a microphone to capture ambient noise and digital signal processing to insert an out of phase signal. Since they’re quite expensive, [Mansour] was determined to resurrect them.

First, he determined that the right speaker had died, so he found a replacement on eBay. These were designed for a different set of headphones, but matched the impedance of the original Bose part. After replacing the driver, it seemed that the repair was a failure. The sound cancelling wasn’t working, and a the playback was high-pitched. As a last attempt, he potted the speaker with glue, to match the original construction. Much to his surprise, this worked.

The problem was that the new driver didn’t have sufficient sound isolation from the microphone, which is meant to pick up passive noise. This feedback likely caused issues with the noise cancelling DSP. A little glue meant a $20 fix for a $400 pair of headphones.