Snowboard goggle HUD displays critical data while falling down a mountain

snowboard-google-hud

[Chris] has been hard at work building a Heads Up Display into some Snowboarding goggles. We’re used to seeing the components that went into the project, but the application is unexpected. His own warning that the display is too close to your face and could cause injury if you were to fall highlights the impractical nature of the build. But hey, you’ve got to start somewhere when it comes to prototyping. Perhaps the next iteration will be something safe to use.

A set of MyVu glasses were added to the top portion of the goggles, which lets the wearer view the LCD output by looking slightly up. The display is fed by a Raspberry Pi board which connects to a GPS module, all of which is powered by a USB backup battery. In the video after the break you can see that the display shows time of day, speed, altitude, and temperature (although he hasn’t got a temperature sensor hooked up just yet). His bill of materials puts the project cost at about £160 which is just less that $250.

[Read more...]

Heads-up display mounts on brim of your cap

[Matt Kwan] says that coming up with a personal heads-up display wasn’t that hard. Well that’s because he made design choices that make all the difference.

The goal here was to add some augmented reality to his field of vision. He went with a baseball cap because it’s a pretty easy way to strap something to your head. You can’t see it from this angle, but the setup requires you to cut a rather large hole in brim. The image from a smartphone (HTC Desire Z in this case) which is situated with the screen pointing toward [Matt's] forehead. The screen reflects off of a small mirror, guiding the image down through a Fresnel lens mounted in the hole of the brim. The image is reflected a second time by the plastic in front of his eyes which is coated with a slightly mirrored material. Since the image is reflected twice it appears right-side up, and the use of the Fresnel lens places the image out about 20 cm in front of his view. He tried to get some images of the effect, but we think you’ve got to see it in person before passing judgement.

This does away with the need to track head movement (there’s a few hacks for that out there though). Augmented reality software is used to turn the view from the smartphone camera into overlay data for the display.

[Thanks Tom]

Follow

Get every new post delivered to your Inbox.

Join 94,591 other followers