Bluetooth Headphones For Hearing Aids

hearing

Cyborgs walk among us, but for the time being, it’s really only people with glasses, contact lenses, the occasional hearing aid and the infrequent prosthesis. As with all technology, these devices can be expanded into something they were not originally designed to do – in [Gertlex]‘ case, the superpower of listening to music through his hearing aids. he gets a few strange looks from wearing a Bluetooth headset around his neck, but the power to turn his hearing aids ito what are effectively in-ear monitors is a great application of modified electronics.

[Gertlex] began with a Bluetooth headset, his hearing aid, a few resistors, some wire, a 3.5mm audio connector, and an absurdly expensive DAI cable. The DAI cable – Direct Audio Input – is a pseudo-standardized feature on many hearing aids. as its name implies, it allows the wearer of a hearing aid to pipe audio directly into their ear.

By cutting up one of these $50+ DAI cables, [Gertlex] was able to construct a DAI to 3.5mm adapter cable. From there, it was simply a matter of installing a 3.5mm socket on a Bluetooth headset.

It’s a brilliant build, with the most expensive component being the DAI connector itself. [Gertlex] has a few ideas for making these connectors himself – they’re really only three pins and some plastic – and we’re hoping he gets around to that soon.

 

DIY Hearing Aid

DIY Hearing Aid

Hearing aids are expensive little devices, typically costing a few thousand dollars each. They need to be highly integrated to fit in the ear, while still providing signal processing to ensure good audio quality.

This DIY hearing aid does some intelligent signal processing. It uses an electret to capture audio, then uses a pre-amplifier to increase the gain 100 times. The next stage consists of four filters, dividing the input signal by frequency into four parts. These are passed into four LTC6910 programmable gain amplifiers, which allow an Arduino to control the gain of each channel. The LTC6910 takes 3 digital inputs that are used to set the gain value.

To determine which gain to use for each frequency band, the Arduino needs to know how much power is in each band. This could be done using a Fast Fourier Transform, but that would require quite a bit of processing power. Instead, an envelope detector averages the signal, which can be read by an analog input on the Arduino. Using this information, the hearing aid can boost specific frequencies when it detects conversation.

This hearing aid won’t quite fit in your ear, but there is a lot of interesting signal processing going on. The schematic, Arduino source code, and a MATLAB simulation are provided.