3D printed helicopter blades

If you’re like us, you’ve been infatuated with the small RC helicopter you picked up on Amazon up until the point where it careened off a wall and broke its blades. Now that you’re wondering about what to do with that small pile of plastic, metal, and electronics, why not print some helicopter blades on your 3D printer?

[Taylor] printed these blades on his Utilimaker, but we don’t see why they couldn’t be printed on a Makerbot or other RepRap. The first set of printed blades worked on the top rotor, but they were too heavy when all four blades were replace. The parts were edited in netfabb using a 0.08mm layer height and now they’re working perfectly. As far as free tools go, Slic3r is the new hotness for .STL to Gcode conversion and now that [Taylor] put the files up on Thingiverse, anyone can print a set of spare blades.

Check out [Taylor] comparing his printed blades to the stock ones that came with his awesome heli after the break.

Continue reading “3D printed helicopter blades”

Look, it’s a helicopter! it’s a plane! it’s a rolling robot!

The helicopter-plane-ball-bot sounds like a creation [Homer Simpson] would come up with, but it’s a fairly accurate description of what this machine can do. It was developed by researches at Japan’s ministry of defense. The single propeller lets it operate much like a helicopter. But when it needs to get somewhere quick, the body repositions itself with the propeller at the front, while those black panels function as wings. Finally, the spherical body lets it travel along surfaces, vertical or horizontal. It can even roll along the ground.

After the break you can see a flight demo video from the 2011 Digital Contents Expo. It makes us wonder about the control interface. Which part of this is the front side, and how does it know which direction the operator intends to steer it? Perhaps there is feedback on the cardinal orientation of the control unit? We don’t have the answers to these queries, but we think there’s something very Sci-Fi about it. It brings to mind the Dog Pod aerostatic defensive grid from Neal Stephenson’s novel The Diamond Age.

Continue reading “Look, it’s a helicopter! it’s a plane! it’s a rolling robot!”

Persistence of vision helicopter blades with RGB LEDs

A user named [BOcnc] on the rcgroups forums just posted his RGB POV helicopter blades.

The two blades are attached to the heli just as any other whirlygig. The electronics, though, are mounted underneath the blade with a battery pack. We covered a build last year that demonstrated weight added to a spinning blade won’t tear everything apart, but that build used only blue LEDs. This build is full color and makes us feel like we’re living in a cyberpunk future populated by Recognizers and Daft Punk.

The images are stored on an SD card that receives data from a USB port. The microcontroller is a PIC32, and from what we can assume from the schematics, the RPM of the blades is measured by an on-board hall effect sensor (don’t quote us on that, though). There’s no hope of a commercial release from [BOcnc], though. He can’t find anyone to manufacture the blades, and the entire build was too expensive. It sure looks pretty though, so check out the video of it after the break.

Continue reading “Persistence of vision helicopter blades with RGB LEDs”

Robots listen only to the leader when building a roving quadcopter landing pad

Swarm robotics is really starting to produce some interesting results. This image is from the video embedded after the break that show a group of five robots creating a landing platform for a quadrotor helicopter. The four that actually make up the platform are not in contact with each other, but instead following commands from the leader. We’re impressed by the helicopter’s ability to target and land on the moving platform. Takeoff appears to be another issue, as the platform bots stop moving until the quadcopter is airborne again.

These robots are part of a Graduate project at Georgia Tech. [Ted Macdonald] has been working along with others to implement an organizational algorithm that guides the swarm. The method requires that the robots have an overview of the location of all others in the swarm. This is done with high-speed cameras like we’ve seen in other robotic control projects. But that doesn’t discourage us. If you already have a flying robot as part of the swarm, you might as well add a few more to serve as the eyes in the sky.

Continue reading “Robots listen only to the leader when building a roving quadcopter landing pad”

ATtiny13 powered handheld helicopter game

[Owen] just finished putting together a portable helicopter game. It’s pretty impressive, especially since he used an ATtiny13 microcontroller. That chip uses an 8-pin dip package, offering only five I/O pins (six if you use the reset pin) and 1k of programming space.

The game runs on a small cellphone-type LCD screen. The helicopter remains somewhere in the center column of the screen as the maze that makes up the game board approaches one step at a time. The single button that controls the helicopter will raise it with each step of the maze when held down, or allow it to fall when released. The player’s progress is shown as a hex value in the upper left corner of the screen. When you hit a wall, your score will be shown next to the high score for the game and will be saved in EEPROM if it’s a new record. As the game progresses, the maze gets harder based on the score. Check it out in a video clip after the break.

Continue reading “ATtiny13 powered handheld helicopter game”

Automatic Micro-Copter Cameraman

For those of you that are extreme sports participants, this “MikroKopter” may be the solution you’ve been waiting for.  When combined with a helmet mounted camera, this additional view should do a great job of capturing your every trick.

This setup attaches a camera to a six-rotor mini helicopter to follow and video the action. In true drone form, the camera is controlled automatically via a “point of interest” tracking transmitter.  The helicopter, however, appears to be controlled by a human operator.

There is really a lot going on with this setup from the micro helicopter itself to the tracking system (really neat how it calculates the camera angle), so be sure to check out their website. Also, be sure to check out the video of everything in action after the break. Continue reading “Automatic Micro-Copter Cameraman”

An odd little box

Here’s an odd little box that might get those creative juices flowing for the upcoming Halloween season. [Jeremy’s] creepy glowing box has a pair of ping-pong ball eyes which diffuse the red light from a pair of LEDs. Both the lid and they eyes move, and the whole thing is set up for wireless control.

The majority of the parts came from a toy RC helicopter that [Jeremy] had sitting in his junk bin. After close inspection he found that the electronics included to motor drivers for the two rotors, as well as two servo motors which worked to steer the aircraft. One of those servos has been repurposed to aim the gaze of they eyes left and right, the other servo is used to lift and close the lid of the box. This leaves the two motor controllers, one of which switches the LEDs on and off. The other doesn’t really have a purpose yet. He tried adding one wheel to the box, but turning that on just makes the whole thing crash to the floor. Check out what he’s done so far in the clip after the fold.

Continue reading “An odd little box”