Arctic Adventures With A Data General Nova II — The Equipment

As I walked into the huge high bay that was to be my part-time office for the next couple of years, I was greeted by all manner of abandoned equipment haphazardly scattered around the room. As I later learned, this place was a graveyard for old research projects, cast aside to be later gutted for parts or forgotten entirely. This was my first day on the job as a co-op student at the Georgia Tech Engineering Experiment Station (EES, since renamed to GTRI). The engineer who gave me the orientation tour that day pointed to a dusty electronic rack in one corner of the room. Steve said my job would be to bring that old minicomputer back to life. Once running, I would operate it as directed by the radar researchers and scientists in our group. Thus began a journey that resulted in an Arctic adventure two years later.

The Equipment

The computer in question was a Data General (DG) mini computer. DG was founded by former Digital Equipment Corporation (DEC) employees in the 1960s. They introduced the 16-bit Nova computer in 1969 to compete with DEC’s PDP-8. I was gawking at a fully-equipped Nova 2 system which had been introduced in 1975. This machine and its accessories occupied two full racks, with an adjacent printer and a table with a terminal and pen plotter. There was little to no documentation. Just to turn it on, I had to pester engineers until I found one who could teach me the necessary front-panel switch incantation to boot it up. Continue reading “Arctic Adventures With A Data General Nova II — The Equipment”

Digital Master Tapes Seek Deck

As a nerdy kid in the 90s, I spent a fair bit of time watching the computer-themed cartoon Reboot. During the course of making a documentary about the show, [Jacob Weldon] and [Raquel Lin] have uncovered the original digital master tapes of the show.

This is certainly exciting news for fans of the show, but there’s a bit of a wrinkle. These digital masters are all on D-1 digital cassette tapes which the studio doesn’t have a player for anymore. The dynamic duo are on the hunt for a Bosch BTS-D1 to be able to recapture some of this video for their own film while also heavily hinting to the studio that a new box set from the masters would be well-received.

As the first CGI TV series, Reboot has a special place in the evolution of entertainment, and while it was a technical marvel for its time, it was solid enough to last for four seasons and win numerous awards before meeting a cliffhanger ending. If you’re an expert in D-1 or have a deck to lend or sell, be sure to email the creators.

Feeling nostalgic for the electromechanical era? Why not check out some hidden lyrics on Digital Compact Cassettes (DCC) or encoding video to Digital Audio Tapes (DAT)?

[via Notebookcheck]

Animated gif of large 1950s computer spitting out a sheet of paper.

Retrotechtacular: 1960s Doc Calls Computers The Universal Machine

It’s weird to think that an abacus would have still been used sixty years ago, or so posits the documentary series The Computer and the Mind of Man. This six part series originally aired on San Francisco local television station KQED in 1962, a time where few people outside of academia had even stood next to such a device.

Episode 3 titled “The Universal Machine” was dedicated to teaching the public how a computer can enhance every type of business provided humans can sufficiently describe it in coded logic. Though mainly filtered through IBM’s perspective as the company was responsible for funding the set of films; learning how experts of the time contextualized the computer’s potential was illuminating.

Continue reading “Retrotechtacular: 1960s Doc Calls Computers The Universal Machine”

Tech In Plain Sight: Super Glue

Many inventions happen not by design but through failure. They don’t happen through the failure directly, but because someone was paying attention and remembered the how and why of the failure, and learns from this. One of these inventions is Super Glue, the adhesive that every tinkerer and engineer has to hand to stick pretty much anything to anything, quickly. Although it was a complete failure for the original uses it was developed for, a chemist with good memory and an eye for a helpful product created it in a process he described as “one day of synchronicity and ten years of hard work.”

Super Glue was initially invented in 1942, when the chemist Harry Coover was working on a team trying to develop a clear plastic gun sight that would be cheaper than the metal ones already in use. The team cast a wide net, trying a range of new materials. Coover was testing a class of chemicals called cyanoacrylates. They had some promise, but they had one problem: they stuck to pretty much everything. Every time that Coover tried to use the material to cast a gun sight, it stuck to the container and was really hard to remove. 

When the samples he tried came into contact with water, even water vapor in the air, they immediately formed an incredibly resilient bond with most materials. That made them lousy manufacturing materials, so he put the cyanoacrylates aside when the contract was canceled. His employer B. F. Goodrich, patented the process of making cyanoacrylates in 1947, but didn’t note any particular uses for the materials: they were simply a curiosity. 

It wasn’t until 1951 when Coover, now at Eastman Kodak, remembered the sticky properties of cyanoacrylates. He and his colleague Fred Joyner were working on making heat-resistant canopies for the new generation of jet fighters, and they considered using these sticky chemicals as adhesives in the manufacturing process. According to Coover, he told Joyner about the materials and asked him to measure the refractive index to see if they might be suitable for use. He warned him to be careful, as the material would probably stick in the refractometer and damage it. Joyner tested the material and found it wasn’t suitable for a canopy but then went around the lab using it to stick things together. The two realized it could make an excellent adhesive for home and engineering use. Continue reading “Tech In Plain Sight: Super Glue”

Books You Should Read: David Macaulay’s Architecture Series

For a lot of us, there’s a bright line separating the books we enjoyed as children from the “real” books of our more mature years. We all eventually age out of the thin, brightly illustrated picture books we enjoyed in our youth, replacing them with thicker, wordier volumes with fewer and fewer illustrations, until they become so dense with information that footnotes and appendices are needed to convey all the information, and a well-written index is a vital necessity to make use of any of it.

Such books seem like a lot less fun than kids’ books, and they probably are, but most of us adjust to the change and accept the fact that the children’s section of the library doesn’t hold much that’ll interest us anymore. But not all the books that get a “JUV” label on their spines are created equal. Some are far more than picture books, even if the pictures are the main attraction. The books of British-born American author David Macaulay come to mind, particularly the books comprising his Architecture Series.

Macaulay’s books were enormously influential in developing my engineering sensibilities, and are still a pleasure to thumb through these many years later. I still learn something about the history of construction and engineering when I pull one of these books off the shelf, which makes them Books You Should Read.

Continue reading “Books You Should Read: David Macaulay’s Architecture Series”

Multispectral Imaging Shows Erased Evidence Of Ancient Star Catalogue

Ancient Greek astronomer Hipparchus worked to accurately catalog and record the coordinates of celestial objects. But while Hipparchus’ Star Catalogue is known to have existed, the document itself is lost to history. Even so, new evidence has come to light thanks to patient work and multispectral imaging.

Hipparchus’ Star Catalogue is the earliest known attempt to record the positions of celestial bodies (predating Claudius Ptolemy’s work in the second century, which scholars believe was probably substantially based on Hipparchus) but direct evidence of the document is slim. Continue reading “Multispectral Imaging Shows Erased Evidence Of Ancient Star Catalogue”

A brass-and-wood replica of Faraday's motor

Replicating Faraday’s 200-Year-Old Electric Motor

Although new electric motor types are still being invented, the basic principle of an electric motor has changed little in the past century-and-a-half: a stator and a rotor built of magnetic materials plus a bunch of strategically-placed loops of wire. But getting even those basic ingredients right took a lot of experimentation by some of the greatest names in physics. Michael Faraday was one of them, and in the process became the first person to turn electricity into motion. [Markus Bindhammer] has recreated Faraday’s experiment in proper 19th century style.

Back in 1821, the very nature of electricity and its relation to magnetism were active areas of research. Tasked with writing an article about the new science of eletromagnetics, Faraday decided to test out the interaction between a current-carrying wire and a permanent magnet, in a setup very similar to [Markus]’s design. A brass wire is hanging freely from a horizontal rod and makes contact with a conductive liquid, inside of which a magnet is standing vertically. As an electric current is passed through the wire, it begins to rotate around the magnet, as if to stir the liquid.

[Markus]’s video, embedded after the break, shows the entire construction process. Starting from rods and sheet metal, [Markus] uses mostly hand tools to create all basic parts that implement the motor, including a neat knife switch. Where Faraday used mercury as the conductive liquid, [Markus] uses salt water – cheaper and less toxic, although it does eventually eat up the brass wire through electrolysis.

While not particularly useful in itself, Faraday’s motor proved for the first time that electric energy could be converted into motion through magnetism, leading to a whole class of ultra-simple motors called homopolar motors. It would be a while before experiments by the likes of Tesla and Ferraris led to modern AC motors. If you don’t like your motors magnetic, you can use electrostatics instead.

Continue reading “Replicating Faraday’s 200-Year-Old Electric Motor”