Virtual Physical Reality With Kintinuous And An Oculus Rift

oculus

The Kinect has long been able to create realistic 3D models of real, physical spaces. Combining these Kinect-mapped spaces with an Oculus Rift is something brand new entirely.

[Thomas] and his fellow compatriots within the Kintinuous project are modeling an office space with the old XBox 360 Kinect’s RGB+D sensors. then using an Oculus Rift to inhabit that space. They’re not using the internal IMU in the Oculus to position the camera in the virtual space, either: they’re using live depth sensing from the Kinect to feed the Rift screens.

While Kintinuous is very, very good at mapping large-scale spaces, the software itself if locked up behind some copyright concerns the authors and devs don’t have control over. This doesn’t mean the techniques behind Kintinuous are locked up, however: anyone is free to read the papers (here’s one, and another, PDF of course) and re-implement Kintinuous as an open source project. That’s something that would be really cool, and we’d encourage anyone with a bit of experience with point clouds to give it a shot.

Video below.

[Read more...]

Self-Balancing Robots Wobble, But They Don’t Fall Down

[Trandi] can check ‘build a self-balancing robot’ off of his to-do list. Over a couple of weekends, he built said robot, and, in his own words, managed not to over-design it. It even kept the attention of his 2-year-old son for several minutes, and that’s always a plus.

He was originally going to re-purpose one of his son’s RC cars, but didn’t want to risk breaking it. Instead, he designed a triangular 3-D printed chassis to hold a motor and some cogs to fit both the motor shaft and some re-used Meccano wheels. [Trandi]‘s design employs an MPU 6050 6-DOF IMU for the balancing act and is built on an Arduino Nano clone.

[Trandi] is controlling the motor with an L293D, which has built-in flyback diodes to minimize spikes. He found that the Nano clone was not powerful enough to handle everything, so he added an L7805CV voltage regulator. After the break, watch [Trandi]‘s cute bot tool around on various types of terrain, with and without a payload.

Don’t have an IMU lying around? You don’t really need one to build a self-balancing bot, as this IR-based lilliputian bot will demonstrate.

[Read more...]

Turning A Building Into A Rubik’s Cube

cube

[Javier] must have an awesome academic adviser. For his master’s thesis, he turned a building into a Rubik’s cube.

The Ars Electronic Center in Linz, Austria, is a building with a whole bunch of colored, programmable lights on the facade. [Javier] thought this would make for an excellent Rubik’s cube, and set to work convincing his thesis advisers this idea was possible, and building the hardware and software.

Since only two sides of the building are visible at any one time, [Javier] needed to build a controller for this project. The solution was to build a normal Rubik’s cube and stuff a microcontroller and a FreeIMU in the center. This setup senses the twists and turns of the Rubik’s cube, as well as it’s position in space, effectively creating an interface between the hand and a giant light-covered building.

The Rubik’s cube interface connects to a computer running an app written in openFrameworks. By sensing the direction the cube is oriented, it can automatically display the two sides of the cube facing the user.

There’s a great video showing just how this building-sized Rubik’s cube works. You can check that out below.

[Read more...]

Retrotechtacular: The Apollo Guidance Computer

apollo-navigation-system

There is so much amazing technology that came out of the space race. For this week’s Retrotechtacular we’re looking at the guidance computer used in the Apollo program undertaken by NASA in the 1960’s.

One of the main components of this system is the Inertial Measurement Unit or IMU. That’s a familiar term for hackers who build quadcopters or other devices for which spacial awareness is paramount. In this case the IMU provided critical information about the motion and orientation of the capsule during it’s trip from the Earth to the Moon and back. But it wasn’t just high tech electronics along for the flight. To determine actual position a sextant was used for triangulating position. Yes, this is the same type of measuring device used for centuries. The method of using the sextant is displayed above. The spacecraft was turned until the sextant pointed at a landmark on Earth. The instrument was the adjusted to line up a star as a landmark, then the computer calculated position based on time and the angles of the two points being sighted. There’s a lot more shown in this thirty-minute film including in-depth assembly and testing of the computer components.

Before we point you to a few related articles we’d like to mention that our stash of really cool Retrotechtacular tips is running low. So if you know of some old footage that’s awesome to watch please send us a tip about it.

Now if you can’t get enough about NASA electronics you should check out the LVDC board which [Fran] got her hands on. Also, it’s worth checking out the unbelievable soldering techniques specified in the NASA manual. There’s a pretty good discussion about that going on in the Reddit thread.

[Read more...]

Yet Another Self-Balancing Unicycle

unicycleScitech

No one has time to hone their balancing skills these days, and if building your own Segway doesn’t generate enough head-turning for you, then the self-balancing unicycle from the guys at [Scitech] should. Their build is chain-driven, using easy-to-find salvaged Razor scooter parts. Throw in a motor controller, 5DOF IMU and some batteries and it’s almost ready to burn up the sidewalks in hipster-tech style.

Some of the previous unicycle builds we’ve seen are a little on the bulky side, but the [Scitech] cycle aims for simplicity with its square tube steel framing and footrests. As always, unicycle builds like these take some effort on behalf of the rider: shifting your weight controls steering and throttle. The [Scitech] gang also discovered that it’s usually best when you don’t accidentally wire the motors up to the controller backwards. We recommend that you find a helmet and watch the video after the break.

Too-cool-for-unicycle hackers can build a dangerously fast e-skateboard instead.

[Read more...]

IMU boards as next-gen motion capture suit?

imu-boards-motion-capture-suit

This guy takes a drink and so does the virtual wooden mannequin. Well, its arm takes a drink because that’s all the researchers implemented during this summer project. But the demo really makes us think that suits full of IMU boards are the next generation of motion capture. Not because this is the first time we’ve seen it (the idea has been floating around for a couple of years) but because the sensor chips have gained incredible precision while dropping to bargain basement prices. We can pretty much thank the smartphone industry for that, right?

Check out the test subject’s wrist. That’s an elastic bandage which holds the board in place. There’s another one on this upper arm that is obscured by his shirt sleeve. The two of these are enough to provide accurate position feedback in order to make the virtual model move. In this case the sensor data is streamed to a computer over Bluetooth where a Processing script maps it to the virtual model. But we’ve seen similar 9-axis sensors in projects like this BeagleBone sensor cape. It makes us think it would be easy to have an embedded system like that on the back of a suit which collects data from sensor boards all over the test subject’s body.

Oh who are we kidding? [James Cameron's] probably already been using this for years.

[Read more...]

Prosthetic spines become musical instruments

spine

[Joseph] and [Ian] have been working on a project that turns physical objects into bendable, snake-like controllers

This build is the culmination of an earlier project that digitally modeled a flexible object with accelerometers, gyroscopes, and IMUs. When we first saw this build, we wondered what it could actually be used for, but it seems [Joseph] and [Ian] came up with a pretty cool use for it: turning prosthetic spines and ribs into musical instruments.

These flexible devices are loaded up with sensors along their joints and are connected to a microcontroller with a Zigbee radio transceiver. The positioning data from these devices is transmitted to a computer where it’s turned into audio, effectively turning a dancer into a musical instrument.

For an art piece, it’s pretty cool, but as a new means of interacting with a computer, we’re thinking this might be a game changer. Imagine a gauntlet loaded up with IMUs being turned into a waldo, or precisely controlling virtual objects naturally with your hand.