Induction Heater Uses New Coil

Induction cook tops are among the most efficient ways of cooking in the home that are commercially available to the average person. Since the cook surface uses magnetic fields to generate heat in the cookware itself, there is essentially no heat wasted. There are some other perks too, such as faster cooking times and more fine control, not to mention that it’s possible to build your own induction stove. All you need is some iron, wire, and a power source, and you can have something like this homemade induction cooker.

This induction heater has a trick up its sleeve, too. Instead of using an air coil to generate heat in the cookware, this one uses an iron core instead. The project’s creator [mircemk] built an air core induction stove in the past, and this new one is nearly identical with the exception of the addition of the iron core. This allows for the use of less wire, and uses a driver circuit called a Mazzilli ZVS driver running through some power MOSFETs to power the device. A couple inductors limit the current to 20A, but it appears to work just as well as the previous stove.

This build puts a homemade induction stove well within reach of anyone with an appropriate power supply and enough wire and inductors to build the coils. [mircemk] has made somewhat of a name for himself involving project that use various coils of wire, too, like this project we featured recently which uses two overlapping air-core coils to build an effective metal detector.

Continue reading “Induction Heater Uses New Coil”

Retrotechtacular: Step Up And Get Your Transformer Training

Whether you’re just getting into electronics or could use a refresher on some component or phenomenon, it’s hard to beat the training films made by the U.S. military. This 1965 overview of transformers and their operations is another great example of clear and concise instruction, this time by the Air Force.

It opens to a sweeping orchestral piece reminiscent of the I Love Lucy theme. A lone instructor introduces the idea of transformers, their principles, and their applications in what seems to be a single take. We learn that transformers can increase or reduce voltage, stepping it up or down through electromagnetic induction. He moves on to describe transformer action, whereby voltages are increased or decreased depending on the ratio of turns in the primary winding to that of the secondary winding.

He explains that transformer action does not change the energy involved. Whether the turns ratio is 1:2 or 1:10, power remains the same from the primary to the secondary winding. After touching briefly on the coefficient of coupling, he discusses four types of transformers: power, audio, RF, and autotransformers.

Continue reading “Retrotechtacular: Step Up And Get Your Transformer Training”