NASA inspired circadian rhythm lights

circadian-rhythm-light-rig

After reading about an initiative between NASA and Boeing to develop lights for the International Space Station [Rasathus] decided to give it a go at building his own. The project uses RGB pixels to build a circadian rhythm light installation. Without the normal rise and fall of the sun the sleep wake schedule for the astronauts can be pretty rough. This uses color and intensity of light in a well-defined schedule to help alleviate that. [Rasathus] is trying to bring his project in well under the $11.1 million mark which was established for the ISS.

The light modules he’s using are from a strand of LEDs from Adafruit. Each is driven by a WS2801 controller, a common driver used for easy and complicated projects like this huge ball of light which our own [Jesse Congdon] tackled. The board above is the start of an adapter board for interfacing with the Raspberry Pi GPIO header. [Rasathus] wanted to make certain he didn’t fry the control electronics so he built some protection into this adapter. The control software is covered in the second portion of  the write up. We’ve embedded the video from that post after the break.

Continue reading “NASA inspired circadian rhythm lights”

Write code, fix the space station, win $10,000

ISS

If you want something great to add to your astronaut application, this is your chance. If you can figure out a way to optimize the position of the solar panels for the International Space Station, you’ll win $10,000 from this TopCoder competition.

Positioning the solar arrays on the ISS is an incredibly complex task; if parts of the arrays are in the shadow of other parts, they’ll bend due to the temperature difference and eventually break. NASA would like more power to run science experiments and other cool stuff, so they’re turning to hackers so they can optimize the amount of power generated on the ISS.

Your goal, as a contestant in this completion, is to define the angular position and velocity for each of the joints that connect the solar panels to the station for every point in a 92-minute orbit. Limitations on any solution  include making sure the masts for each panel aren’t in a shadow more than they need to be, making sure the cycle can be repeated each orbit, and making sure the most power is generated on board.

The completion is open, so if you haven’t done enough matrix algebra this weekend feel free to sign up. In any event, you’ll get a cool CAD model of the ISS.

 

Observe a satellite’s Morse Code message today!

Niwaka1-satellite

If you live in the Eastern portion of the United States and the skies are clear you can see a student built satellite flashing LEDs in Morse Code today. But don’t worry. If you it’s cloudy or if you live elsewhere there are several other opportunities to see it in the coming days.

This is the Niwaka Fitsat-1. It was developed by students at the [Fukuoka Institute of Technology] and deployed from the International Space Station on October 4th. Included in the payload is an array of LEDs seen in the image above. On a set schedule these are used to flash a Morse Code message for two minutes at a time. That is what’s shown in the image on the upper right.

You can look up information on seeing Fitsat-1 in your own area using this webpage. All of the observation windows in our area require a pair of binoculars or better. We’re not sure if there is any case in which this can be seen by the naked eye.

[Thanks SWHarden and KomradBob]

Saving the ISS by hacking a toothbrush

 

We absolutely love these stories of hacker ingenuity saving peoples lives. In this case, it was aboard the ISS, and the item being hacked was a toothbrush.

The story is as follows. Some equipment failed, as space junk tends to do, and the astronauts found themselves needing to do some repairs. Upon inspection, they couldn’t remove some modules due to an accumulation of “space dust” around some bolts.  This was especially troubling as the unit in question was something that was supposed to route power from some of the solar arrays to the ISS. Even more troubling is that another unit failed while they were assessing the situation.

Realizing they had to act fast so as not to lose too much power to function, they cobbled together some tools to allow them to clean out the access ports and remove the units for repair. A task that sounds like an easy solution here on earth proved to be life threatening in space. Eventually though, their makeshift tools came to the rescue and they were able to repair and restore power.

Satellite tracking by shining a laser into space

[Shingo Hisakawa] sent in a tip for a for a neat little box called the Levistone that tracks the Internation Space Station with a laser. His video log goes though all the steps for this great little project.

[Shingo] originally planned to pull orbital data down from NORAD and send that to an ArduinoBT board with ethernet, GPS and compass modules. In the original plan, the Arduino would do the orbit calculations and point the laser using a few servos. There wasn’t much success with making an Arduino do all the work, so the an Android phone stood in for the GPS, compass and connection to the web. The duty of calculating the location of the ISS using GPS and orbital elements was moved onto the Amazon EC2 cloud. The final product looks great, even if it’s impossible to record the beam for the video.

With the ability to calculate the azimuth and elevation of the ISS from any point in the world, [Shingo] came up with SightSpaceStation, a neat mashup of his data and Google Maps. There are also iOS and Android apps for a nice piece of work in augmented reality. It’s a great project that would really compliment the ISS desk lamp we covered a few days ago.

Building a Yagi-Uda antenna

[Tommy Gober] built this Yagi-Uda antenna that has some handy design features. The boom is a piece of conduit with holes drilled in the appropriate places. The elements are aluminum arrow shafts; a good choice because they’re straight, relatively inexpensive, and they have #8-32 screw threads in one end. He used some threaded rod to connect both sides of the reflector and director elements. The driven elements are mounted offset so that a different machine screw for each can be connected to the appropriate conductor of the coaxial cable. The standing wave ratio comes in right where it should meaning he’ll have no trouble picking up those passing satellites as well as the International Space Station.

Hackaday Links: December 7 2009

Ah the beauty of watching molten solder pull SMD components into place. Yeah, we’ve seen it before, but for some reason it never gets old.

The glory days of wardriving are certainly behind us but if you’re still hunting in certain areas for access points you can leave the laptop at home. A homebrew program called Road Dog can turn your PSP into a WiFi search device. You must be able to run custom code to use this app.

Ferrofluid is our friend. But having grown up watching the Terminator and Hellraiser movies we can’t help being a little creeped out by the effects seen in this movie.

Follow along with the NASA astronauts in this 20 minute HD tour of the international space station. It’s a cramped place to live but we can’t help thinking that it looks incredibly clean. After all, where would the dirt come from?

How are your woodworking skills?  Can you take a wooden block and turn it on a lathe until you have a lampshade 1/32″ thick? We’d love to see how these are made, but imagine the artist’s reaction when hours of labor are ruined by a minuscule amount of misplaced pressure on a carving tool. Patience, we’ll learn it some day!

This video from the past that is about the future of  travel does leave us wondering why our cars don’t have built-in radar for poor visibility? We’ve already realized the rear-view-mirror-tv-picture, but we’re going to need your help before the flying police/fire/ambulance-mobile is a common sight. Oh, the fun of seeing a high-tech push-button selector 3:30 into the video. Perhaps the touch-screen was a bit beyond the vision of the time.

Sometimes you have so many servants you need to find creative things for them to do. Only the most discriminating of the super-rich employ a person whose sole responsibility is to erase and redraw the hands of a clock each minute. This video is obviously a result of the global recession as the live time-keeper has been let go; a looping recording took his job!

Last time we checked in with [Marco Tempest] he was syncing video over multiple iPhones. Now he’s at it again with an augmented reality setup. A camera picks up some IR LEDs in a canvas and translates that into information for a video projector. We’d call this a trick, but it’s certainly not magic.