Tattoo-Removal Laser Brought Out Of Retirement For A Megawatt Of Fun

We’ve got to say that [Les Wright] has the most fun on the internet, at least in terms of megawatts per dollar. Just look at his new video where he turns a $30 eBay tattoo-removal laser into a benchtop beast.

The junk laser in question is a neodymium:YAG pulse laser that clearly has seen better days, both externally and internally. The original pistol-grip enclosure was essentially falling apart, but was superfluous to [Les]’ plans for the laser. Things were better inside the business end of the gun, at least in terms of having all the pieces in place, but the teardown still revealed issues. Chief among these was the gunk and grunge that had accumulated on the laser rod and the flash tube — [Les] blamed this on the previous owner’s use of tap water for cooling rather than deionized water. It was nothing a little elbow grease couldn’t take care of, though. Especially since the rest of the laser bits seemed in good shape, including the chromium:YAG Q-switch, which allows the lasing medium to build up a huge pulse of photons before releasing them in one gigantic pulse.

Cleaned up and with a few special modifications of his own, including a custom high-voltage power supply, [Les]’ laser was ready for tests. The results are impressive; peak optical power is just over a megawatt, which is enough power to have some real fun. We’ll be keen to see what he does with this laser — maybe blasting apart a CCD camera?

Continue reading “Tattoo-Removal Laser Brought Out Of Retirement For A Megawatt Of Fun”

Femtosecond Laser Clones Itself In Glass

When researchers at the Galatea laboratory in Switzerland set out to create a femtosecond laser in glass they weren’t certain it was going to work. To be precise, their goal was to create a femtosecond laser cavity using carefully aligned optics. Rather than using the traditional, discrete method, they used a commercial femtosecond laser to carve out the elements of the optical cavity in glass. The choice for glass came down to the low thermal expansion of this material, and it being transparent for the optical frequencies being targeted.

Generic concept of an “all-glass” optical device, with the various stages of fabrication. (Credit: Antoine Delgoffe et al., 2023)
Generic concept of an “all-glass” optical device, with the various stages of fabrication. (Credit: Antoine Delgoffe et al., 2023)

Even after using the existing laser to create the rough laser cavity, the resulting optical mirrors were not aligned properly, but this was all part of the plan.

By also adding slots that created a flexure mechanism, brief laser pulses could be used to gradually adjust the mirrors to create the perfect alignment. During subsequent testing of the newly created laser cavity it was found to be operating as expected. The original femtosecond laser had successfully created a new femtosecond laser.

Perhaps the most tantalizing aspect of this research is that this could enable much faster and ultimately cheaper production of such laser systems, especially once the tedious and currently completely manual mirror alignment procedure is automated. In addition, it raises the prospect of producing other types of optics including splitters and guides in a similar manner.

Mosquito Laser Death Grid Is Just What It Sounds Like

Mosquitoes suck. Quite literally. [Allen Pan] lives in an area where they’re so thick in the air, regular methods of killing them fail to put a dent in their numbers. Thus, he set about building a solution so dangerous we wouldn’t want to be within a mile when it’s turned on. 

[Allen] was inspired by a TED talk from over a decade ago that involved targeting flying mosquitoes with high-powered scanning lasers. This technology never really came to fruition, and raised many questions about laser safety and effectiveness.

Testing the idea with only two mirrors installed.

This solution keeps the lasers, but goes a slightly different route — two 10-watt lasers bounced between multiple mirrors to create a laser death grid. It goes without saying that 10 watt lasers will blind you near instantly even at great range, and can burn skin and cause all manner of other horrors. Bouncing them around with mirrors and waving them about at mosquitoes is a really poor idea when even incidental exposure can do real harm.

Indeed, the laser is so powerful that it burns holes in the mirrors [Allen] used in early testing. It was around this time that [styropyro] was brought in to help ensure everyone involved got through the project with their eyesight intact.

[Allen]’s crew wears laser safety goggles when operating the horrifying handheld device, which mitigates some risk. The team also quickly notice beams escaping from various directions, due in part to the holes burned in their clothes. Electing to wrap the device in a heatproof blanket to avoid accidentally dazzling any nearby pilots was an obvious idea but turning the device off and destroying it would have been smarter.

Sadly, despite looking like the coolest cyberpunk weapon we’ve seen in years, the device doesn’t even kill mosquitoes very effectively. The bugs largely avoided the device, and only a few that flew directly into a beam ended up being cooked. The whole time watching the video, we feared someone dropping the rig, leading to a 10-watt beam bouncing off and striking some poor innocent bystander.

Powerful lasers are cool and useful things. Try and use them responsibly.

Continue reading “Mosquito Laser Death Grid Is Just What It Sounds Like”

Electro-Optical Control Of Lasers With A Licorice Twist

You’ve got to hand it to [Les Wright]; he really knows how to dig into optical arcana and present topics in an interesting way. Case in point: an electro-optical control cell that’s powered by ouzo.

OK, the bit about the Greek aperitif may be stretching things a bit, but the Kerr Cell that [Les] builds in the video below does depend on anethole, the essential component of aniseed extract, which lends its aromatic flavor to everything from licorice to Galliano and ouzo. As [Les] explains, the Kerr effect uses a high-voltage field to rapidly switch light passing through a medium on and off. The most common medium in Kerr cells is nitrobenzene, a “distressingly powerful organic solvent” with such fun side effects as toxicity, flammability, and carcinogenicity.

Luckily, [Les] found a suitable substitute in the form of anethole — a purified sample, not just an ouzo nip. The solution went into a plain glass cuvette equipped with a pair of aluminum electrodes, which got connected to one of the high-voltage supplies we’ve seen him build before for his nitrogen laser. A pair of polarizing filters go on either end of the cuvette, and are adjusted to blank out the light passing through it. Applying 45 kilovolts across the cell instantly turns the light back on. Watch it in action in the video below.

There’s a lot of room left for experimentation on this one, including purification of the anethole for potentially better results. We’d also be curious if plain ouzo would show some degree of Kerr effect. For science, of course.

Continue reading “Electro-Optical Control Of Lasers With A Licorice Twist”

Review: WAINLUX K8, A Diode Laser That’s Ready To Work

Rarely a week goes by that some company doesn’t offer to send us their latest and greatest laser. You know the type — couple of aluminum extrusions, Class 4 diode flopping around in the breeze, and no enclosure to speak of unless you count the cardboard box they shipped it in. In other words, an accident waiting to happen. Such gracious invitations get sent to the trash without a second thought.

Now don’t get me wrong, I have no doubt that the average Hackaday reader would be able to render such a contraption (relatively) safe for use around the shop. Build a box around it, bolt on a powerful enough fan to suck the smoke out through the window, and you’ve turned a liability into a legitimate tool. But the fact remains that we simply can’t put our stamp on something that is designed with such a blatant disregard for basic safety principles.

The earlier WAINLUX JL4 — lucky rabbit foot not included.

That being the case, a recent email from WAINLUX nearly met the same fate as all those other invitations. But even at a glance it was clear that this new machine they wanted to send out, the K8, was very different from others we’d seen. Different even from what the company themselves have put out to this point. This model was fully enclosed, had a built-in ventilation fan, an optional air filter “sidecar”, and yes, it would even turn off the laser if you opened the door while it was in operation. After reading through the promotional material they sent over, I had to admit, I was intrigued.

It seemed like I wasn’t the only one either; it was only a matter of days before the Kickstarter for the WAINLUX K8 rocketed to six figures. At the time of this writing, the total raised stands at just under $230,000 USD. There’s clearly a demand for this sort of desktop laser, the simplicity of using a diode over a laser tube is already appealing, but one that you could actually use in a home with kids or pets would be a game changer for many people.

But would the reality live up to the hype? I’ve spent the last couple of weeks putting a pre-production WAINLUX K8 through its paces, so let’s take a look and see if WAINLUX has a winner on their hands.

Continue reading “Review: WAINLUX K8, A Diode Laser That’s Ready To Work”

This 3D Scanner Uses A Sensor You Might Not Know About

The huge diversity of sensors and other hardware which our community now has access to seems comprehensive, but there remain many parts which have made little impact due to cost or scarcity. It’s one of these which [Enginoor] has taken for the sensor in a 3D scanner, an industrial laser displacement sensor.

This sensor measures distance, but it’s not one of the time-of-flight sensors we’re familiar with. Instead it’s similar to a photographic rangefinder, relying on the parallax angle as seen from a sensor a distance apart from the laser. They are extremely expensive due to their high-precision construction, but happily they can be found at a more affordable level second-hand from decommissioned machinery.

In this case the sensor is mounted on an X-Y gantry, and scans the part making individual point measurements. The sensor is interfaced to a Teensy, which in turn spits the data back to a PC for processing. By their own admission it’s not the most practical of builds, but for us that’s not the point. We hope that bringing these parts to the attention of our community might see them used in other ways.

We’ve featured huge numbers of 3D scanners over the years, including a look at how not to make one.

Laser Engraver Uses All Of The DVD Drive

For the last ten to fifteen years, optical drives have been fading out of existence. There’s little reason to have them around anymore unless you are serious about archiving data or unconvinced that streaming platforms will always be around. While there are some niche uses for them still, we’re seeing more and more get repurposed for parts and other projects like this tabletop laser engraver.

The build starts with a couple optical drives, both of which are dismantled. One of the shells is saved to use as a base for the engraver, and two support structures are made out of particle board and acrylic to hold the laser and the Y axis mechanism. Both axes are made from the carriages of the disassembled hard drives, with the X axis set into the base to move the work piece. A high-output laser module is fitted to the Y axis with a heat sink, and an Arduino and a pair of A4988 motor controllers are added to the mix to turn incoming G-code into two-dimensional movement.

We’ve actually seen a commercial laser engraver built around the same concept, but the DIY approach is certainly appealing if you’ve got some optical drives collecting dust. Otherwise you could use them to build a scanning laser microscope.

Continue reading “Laser Engraver Uses All Of The DVD Drive”