Video Series Shows Custom Machined Fly Reel

For those of us who can’t get enough vicarious machining, YouTube is becoming a gold mine. Intricate timepieces, gigantic pump shafts, and more and better machine tools are all projects that seem to pop up in our feed regularly.

With all that to choose from, can a series on building a fly fishing reel actually prove interesting? We think so, and if you enjoyed [Clickspring]’s recently completed pedestal clock, you might just get a kick out of what’s cooking in [JH Reels]’ shop. Comparing any machining videos to [Clickspring]’s probably isn’t very fair, but even with a high bar to hurdle, [JH Reels] comes out looking pretty good. The challenge here is that this is a saltwater fly reel, so extra care with material selection and machining methods ought to make for some interesting viewing. Also of interest is the range of tooling needed to produce the reel. From lathe to mill to waterjet cutter, a lot goes into these parts, and watching them come together is fascinating.

You wouldn’t think a seemingly simple mechanism like a fly reel would be so complicated to build. But there’s a lot more to it than meets the eye, and with a reel that’s clearly destined to be an heirloom piece, [JH Reels]’ attention to detail is impressive. The series currently stands at 10 videos, and we’re keen to see how it turns out.

The first video is posted below to whet your appetite. But if machining and fishing don’t do it for you, maybe you can try drones and fishing instead.

Continue reading “Video Series Shows Custom Machined Fly Reel”

New Lathe Day is Best Day

As [Quinn Dunki] rightly points out, modern industrial civilization was probably conceived on the bed of a lathe. Turning is an essential step in building every machine tool, including lathes, and [Quinn] decided it was time to invite one into her shop. But she discovered a dearth of information to guide the lathe newbie through that first purchase, and thus was born the first installment in her series on choosing and using a new lathe.

As for the specifics of the purchase, [Quinn]’s article goes into some depth on the “old US iron” versus “new Asian manufacture” conundrum. Most of us would love an old South Bend or Cincinnati lathe, but it may raise practical questions about space planning, electrical requirements, and how much work is needed to get the old timer working again. In the end, [Quinn] took the path of least resistance and ordered a new lathe of Chinese heritage. She goes into some detail as to what led to that decision, which should help other first-timers too, and provides a complete account of everything from uncrating to first chips.

Nothing beats the advice of a grizzled vet, but there’s a lot to be learned from someone who’s only a few steps ahead of her intended audience. And once she’s got the lathe squared away, we trust she’ll find our tips for buying a mill helpful getting that next big shipment delivered.

“All the best things in life arrive on a pallet.” Have truer words ever been spoken? Sure, when the UPS truck pulls up with your latest Amazon or eBay treasure, it can be exciting. But a lift-gate truck rolling up to the curb? That’s a good day.

Making A Shifter Knob From Old Skateboards

Do you have a car? Does that car have a manual transmission? Do you want to beautify your shifter knob, while simultaneously gaining mad street cred, yo? Well, you’re in luck, because all of that can be done for the low, low price of a couple old skateboard decks, a lathe, and a lot of glue.

This project, from [basiltab] illustrates how you can use old skateboard decks to create really cool looking custom shifter knobs. The process starts with cutting the decks up into uniform strips, which are then glued and clamped to form small planks. Sections of the decks were alternated, to create a visually interesting pattern. The planks are then sanded so that they’re smooth and flat, and then glued up in a jig to form blocks with a threaded aluminum insert in the center. Optionally, aluminum can be used for some of the layers to add a little flair (2-part epoxy was used in place of glue for the aluminum).

After the glue has dried, the blocks can then be turned on a lathe to create the desired shape of the knob. As you can see, the results are pretty darn nifty. And, they certainly have a little more artistic credibility than the giant acrylic shifter knobs you normally find at your local auto parts store. Don’t worry, if you thought this article was about shift registers, we’ve got you covered there too.

For Your Binge-Watching Pleasure: The Clickspring Clock Is Finally Complete

It took as long to make as it takes to gestate a human, but the Clickspring open-frame mechanical clock is finally complete. And the results are spectacular.

If you have even a passing interest in machining, you owe it to yourself to watch the entire 23 episode playlist. The level of craftsmanship that [Chris] displays in every episode, both in terms of the clock build and the production values of his videos is truly something to behold. The clock started as CAD prints glued to brass plates as templates for the scroll saw work that roughed out the frames and gears. Bar stock was turned, parts were threaded and knurled, and gear teeth were cut. Every screw in the clock was custom made and heat-treated to a rich blue that contrasts beautifully with the mirror polish on the brass parts. Each episode has some little tidbit of precision machining that would make the episode worth watching even if you have no interest in clocks. For our money, the best moment comes in episode 10 when the bezel and chapter ring come together with a satisfying click.

We feature a lot of timekeeping projects here, but none can compare to the Clickspring clock. If you’re still not convinced, take a look at some of our earlier coverage, like when we first noticed [Chris]’ channel, or when he fabricated and blued the clock’s hands. We can’t wait for the next Clickspring project, and we know what we’re watching tonight.

Continue reading “For Your Binge-Watching Pleasure: The Clickspring Clock Is Finally Complete”

A Machine Shop in A Toolbox: Just Add Time

You don’t need any fancy tools. A CNC machine is nice. A 3D printer can help. Laser cutters are just great. However, when it comes to actually making something, none of this is exactly necessary. With a basic set of hand tools and a few simple power tools, most of which can be picked up for a pittance, many things of surprising complexity, precision, and quality can be made.

Not as pretty, but worked just the same.
Not as pretty, but worked just the same.

A while back I was working on a ring light for my 3D printer. I already had a collection of LEDs, as all hackers are weak for a five-dollar assortment box. So I got on my CAD software of choice and modeled out a ring that I was going to laser cut out of plywood. It would have holes for each of the LEDs. To get a file ready for laser cutting ook around ten minutes. I started to get ready to leave the house and do the ten minute drive to the hackerspace, the ten minutes firing up and using the laser cutter (assuming it wasn’t occupied) and the drive back. It suddenly occurred to me that I was being very silly. I pulled out a sheet of plywood. Drew three circles on it with a compass and subdivided the circle. Under ten minutes of work with basic layout tools, a power drill, and a coping saw and I had the part. This was versus the 40 minutes it would have taken me to fire up the laser cutter.

Continue reading “A Machine Shop in A Toolbox: Just Add Time”

Making an Espresso Pot In the Machine Shop

[This Old Tony] was cleaning up his metal shop after his yearly flirtation with woodworking when he found himself hankering for a nice coffee. He was, however, completely without a coffee making apparatus. We imagine there was a hasty round of consulting with his inanimate friends [Optimus Prime] and [Stefan Gotteswinter Brush] before he decided the only logical option was to make his own.

So, he brought out two chunks of aluminum from somewhere in his shop, modeled up his plan in SolidWorks, and got to work.  It was designed to be a moka style espresso pot sized around both the size of stock he had, and three purchased parts: the gasket, funnel, and filter. The base and top were cut on a combination of lathe and mill. He had some good tips on working with deep thin walled parts. He also used his CNC to cut out some parts, like the lid and handle. The spout was interesting, as it was made by building up a glob of metal using a welder and then shaped afterward.

As usual the video is of [This Old Tony]’s exceptional quality. After quite a lot of work he rinsed out most of the metal chips and WD40, packed it with coffee, and put it on the stove. Success! It wasn’t long before the black stuff was bubbling into the top chamber ready for consumption.

Shop Made Squareness Comparator

[Stefan Gotteswinter] has a thing for precision. So it was no surprise when he confessed frustration that he was unable to check the squareness of the things he made in his shop to the degree his heart desired.

He was looking enviously at the squareness comparator that [Tom Lipton] had made when somone on Instagram posted a photo of the comparator they use every day. [Stefan] loved the design and set out to build one of his own. He copied it shamelessly, made a set of drawings, and got to work.

[Stefan]’s videos are always a trove of good machine shop habits and skills. He always shows how being careful, patient, and doing things the right way can result in really astoundingly precise work out of a home machine shop. The workmanship is beautiful and his knack for machining is apparent throughout. We chuckled at one section where he informed the viewer that you could break a tap on the mill when tapping under power if you bottom out. To avoid this he stopped at a distance he felt was safe: 0.5 mm away.

The construction and finishing complete, [Stefan] shows how to use the comparator at the end of the video, viewable after the break.

Continue reading “Shop Made Squareness Comparator”