Mindless Toddler Toy Becomes Teaching Tool

If you want to sell a toy for the toddler crowd, it ought to be pretty close to indestructible. A lot of toys out there are just plain nonsense game-wise and therefore waste their beefy potential. [2dom]’s wife was close to throwing out such a toy—a Little Tikes Goofy Ball. The thing literally does nothing but let you push its big buttons in. After some time passes, it pops them back out again and giggles. Game over. [2dom] rescued it from the trash and turned it into a toy that plays math games.

[2dom] removed the existing board and replaced it with an Arduino Pro Mini and a Darlington array that drives the motor that pops the buttons back out, the speaker, and a Nokia 5110 screen. Upon startup, the user chooses between addition, subtraction, and multiplication questions using the appropriate button. Questions appear in the middle of the screen and multiple choice answers in the corners.

Choose the right answer and the ball cheers and shows one of a few faces. Choose the wrong answer and it makes a buzzing sound and shows an X. There is an adaptive level system for the questions that [2dom] doesn’t show in the demonstration video after the break. For every five correct answers, you level up. His 3- and 5-year-olds love it. For more advanced teachable moments, there’s this toy-turned-enigma-machine.

Continue reading “Mindless Toddler Toy Becomes Teaching Tool”

What Can We Learn From a Cheap Induction Cooktop?

Sometimes tearing down a cheap appliance is more interesting that tearing down an expensive one. A lot of the best engineering happens when cost is an issue. You may not solve the problem well, but you can solve it well enough for a discount shelf.

[openschemes] purchased a 1.8kW induction hot plate at a low price off Amazon. The reasons for the discount soon became apparent. The worst of which was a fully intolerable amount of high frequency switching noise. Wanting to know how it worked, he took it apart.

After he had it apart on his desk, he deciphered the circuit, and wrote about it clearly. As usual with extremely cheap electronics, some clever hacks were employed. The single micro-controller was used for monitoring, and generated a PWM signal that was instantly converted to DC through some filters. All the switching was done the old fashioned way, which explained why the hotplate seemed so brainless to [openschemes] when he first turned it on.

Lastly, he did some work on manually controlling the cooktop for whatever reason. The good news? He managed to figure out how to control it. Unfortunately he also destroyed his unit in the process, via a misapplication of 1200 volts. A fitting end, and we learned a lot!

Thanks [David Balfour] for the tip!

Kids Explore Engineering with Cartoon Tech Build

“To the Tortuga!” my husband and I heard the announcement from the backyard. Our two boys, Ben (7) and Miles (3), had become pleasantly obsessed with the coolest brothers in nature – the Kratt Brothers. From the moment that these two energetic animal-loving brothers were discovered by our kids, they’ve been huge fans. Our house has been transported to the Sonora Desert where we saved a Gila Monster, then to the Australian Outback to learn about the Thorny Devil. We even went to swing with the Spider Monkeys in South America and then back to the good ‘ole U.S. of A to harness the speed of the Roadrunner – since we are, after all, a family of runners!

creaturepod-from-show
Creaturepod [Source: WildKratts Wiki]
Our boys have been the Grand Brothers for months and there are no signs of it letting up. At the end of summer, I decided to reward the kids with a Creaturepod, a plastic toy meant to look like the fictional walkie talkie of the same name used on PBS Kids’ Wild Kratts program. They loved it, but soon found that it didn’t do anything on its own. They both have wild imaginations and like to bring to life most of their play, but the toy just wasn’t doing it for them. Being that Chris and Martin Kratt are brothers in real life, and Ben and Miles Grand are brothers in real life, Ben thought it would only be right to have “real life” Creaturepods. Real walkie talkies that he could use to communicate with his friends and have Wild Kratts adventures. This natural interest provided an opportunity to make learning, designing, and building a source of fun for the boys. It is an amazing way to teach that you can change the world around you by having an idea, making a plan, and gathering everyone with the skills needed to complete the project.

Continue reading “Kids Explore Engineering with Cartoon Tech Build”

BlocksCAD is Browser-Based 3D Modeling that Teaches You CAD

Considering all of the projects the Raspberry Pi is used for now, the fact that it was originally envisioned to be an educational tool is sometimes forgotten. One of the tools commonly available with it is Scratch, a programming language that is easy to learn and can be seen as a gateway into other computer science realms. Building on this principle, MIT has come up with a new block-based educational tool called BlocksCAD.

BlocksCAD is essentially Scratch combined with OpenSCAD and allows the user to use blocks (similar to Scratch) to build a 3D model. The interface is fairly intuitive, and with some practice even complex shapes can be created using the tools available. Also, everything runs in a browser like the 3D modeling tool we featured a few days ago, so there isn’t anything to download or install.

The key to this project (like the key to Scratch) is that the user isn’t bogged down by syntax, which is often one of the largest hurdles for anyone who is just starting to learn to program. Since it’s possible to avoid syntax but still develop 3D models, this new tool should help anyone interested in the field of 3D modeling or CAD get a start without getting scared away too easily. Of course, if you do end up deep in the field of computer science and want to learn more about this project, the developers have opened up the source code as well.

Thanks for the tip, [Matt]!

Try Not To Fall Off The Backwards Brain Bike

[Destin] of SmarterEveryDay fame has a challenge for your brain : a bicycle where the handlebars turn the front wheel in the opposite direction of a typical bike (YouTube link). For example, turning the handlebars left turns the wheel right and vice versa. He warns you it’s harder than it looks.

The hack that pulls this off is a simple one compared to bike hacks we’ve previously covered. Gears on the head tube make this possible. It was built by his welder friends who challenged him to ride it. He couldn’t at first; determined to overwrite his brain’s memory of bike riding, he practiced until he finally succeeded. It took him eight months. When it was time to ride an old-fashioned bike, it only took him about twenty minutes to “un-learn” the Backwards Brain Bike. [Destin’s] biking illustrates neuroplasticity, memory, and learning in a fun way (fun for us; no doubt frustrating for him).

As a testament to the sponge-like brains of youth, [Destin’s] son learned to ride the Backwards Brain Bike in only two weeks.

Continue reading “Try Not To Fall Off The Backwards Brain Bike”

Hacking Education; Project-Based Learning Trumps the Ivory Tower

Project-based learning, hackathons, and final projects for college courses are fulfilling a demand for hands-on technical learning that had previously fallen by the wayside during the internet/multi-media computer euphoria of the late 90’s. By getting back to building actual hardware yourself, Hackers are influencing the direction of education. In this post we will review some of this progress and seek your input for where we go next.

Continue reading “Hacking Education; Project-Based Learning Trumps the Ivory Tower”

RFID emulator card includes a learning mode

rfid-emulator

This RFID card has a lot of nice features. But the one that stands out the most is the ability to learn the code from anther RFID tag or card.

You can see that the board includes an etched coil to interact with an RFID reader. This is the sole source of power for the device, letting it pick up enough induced current from the reader to power the PIC 12F683 seen on the upper left of the board. The underside of the PCB hosts just three components: an LED and two switches. One of the switches puts the device in learning mode. Just hold down that button as you move the board into the magnetic field of the reader. While in learning mode a second RFID tag is held up to the reader. It will identify itself and the emulator will capture the code sent during that interaction. This is all shown of in the video after the break. We wonder how hard it would be to make a version that can store several different codes selected by holding down a different button as the emulator is held up to the reader?

If you want to build your own card reader too here’s a project that does it from scratch.

Continue reading “RFID emulator card includes a learning mode”