540 LEDs On A Geodesic Sphere

[burgerga] loves attending Music Festivals. He’s also a MechE who loves his LED’s. He figured he needed to put it all together and do something insane, so he build a huge, 15″ geodesic sphere containing 540 WS2812B addressable LED’s. He calls it the SOL CRUSHER. It sips 150W when all LED’s are at full intensity, making it very, very, bright.

As with most WS2812B based projects, this one too is fairly straightforward, electrically. It’s controlled by four Teensy 3.2 boards mounted on Octo WS2811 adapter boards. Four 10,000 mAh 22.2V LiPo batteries provide power, which is routed through a 5V, 30Amp heatsinked DC-DC converter. To protect his LiPo batteries from over discharge, he built four voltage monitoring modules. Each had a TC54 voltage detector and an N-channel MOSFET which switches off the LiPo before its voltage dips below 3V. He bundled in a fuse and an indicator, and put each one in a neat 3D printed enclosure.

The mechanical design is pretty polished. Each of the 180 basic modules is a triangular PCB with three WS2812B’s, filter capacitors, and heavy copper pours for power connections. The PCB’s are assembled in panels of six and five units each, which are then put together in two hemispheres to form the whole sphere. His first round of six prototypes set him back as he made a mistake in the LED footprint. But it still let him check out the assembly and power connections. For mechanical support, he designed an internal skeleton that could be 3D printed. There’s a mounting frame for each of the PCB panels and a two piece central sphere. Fibreglass rods connect the central sphere to each of the PCB panels. This lets the whole assembly be split in to two halves easily.

It took him over six months and lots of cash to complete the project. But the assembly is all done now and electrically tested. Next up, he’s working on software to add animations. He’s received suggestions to add sensors such as microphones and accelerometers via comments on Reddit. If you’d like to help him by contributing animation suggestions, he’s setup a Readme document on Dropbox, and a Submission form. Checkout the SolCrusher website for more information.

Thanks [Vinny Cordeiro], for letting us know about this build.

Continue reading “540 LEDs On A Geodesic Sphere”

Using WS2811 Chip to Drive Incandescent Lamps

What makes the WS2812-style individually addressable pixel LEDs so inviting? Their rich colors? Nope, you can get RGB LEDs anywhere. Their form factor? Nope. Even surface-mount RGBs are plentiful and cheap. The answer: it’s the integrated controller. It’s just so handy to speak an SPI-like protocol to your LEDs — it separates the power supply from the data, and you can chain them to your heart’s desire. Combine this controller and the LEDs together in a single package and you’ve got a runaway product success.

But before the WS2812, there was the WS2811 — a standalone RGB controller IC. With the WS2812s on the market, nobody wants the lowly WS2811’s anymore. Nobody except [Michael Krumpus], that is. You see, he likes the old-school glow of incandescent, but likes the way the WS2812 strings are easy to drive and extend. So he bought a bag of WS2811s and put the two together.

The controller IC can’t handle the current that an incandescent bulb requires, so he added a MOSFET to do the heavy lifting. After linking a few of these units together, he discovered (as one does with the LED-based WS2812s eventually) that the switching transients can pull down the power lines, so there is a beefy capacitor accompanying each bulb.

He wanted each bulb to be independently addressable, so he only used the blue line of the RGB controller, which leaves two outputs empty. I’m sure you can figure out something to do with them.

Needless to say, we’ve seen a lot of WS2812 hacks here. It’s hard to pick a favorite. [Mike] of “mike’s electric stuff” fame built what may be the largest installation we’ve seen, and this hack that effectively projection-maps onto a randomly placed string of WS2812s is pretty cool. But honestly, no project that blinks or glows can go far wrong, right?

Continue reading “Using WS2811 Chip to Drive Incandescent Lamps”

Hackaday Links: June 5, 2016

CERN is having a hackathon. It’s in October, yes, but the registration is closing on the 15th of June. They’ve been doing this every year, and the projects that come out of this hackathon are as diverse as infrastructure-less navigation, cosmic ray detectors, and inflatable refrigerators.

Have one of those solder fume extractors? Here’s an obvious improvement. [polyglot] put a strip of LEDs around the frame of his solder fume extractor to put a little more light on the subject.

A few months ago, [Bunnie] started work on a book. It was the Essential Guide to Electronics in Shenzhen. It’s made for hardware hackers to figure out how to buy stuff in Shenzhen, using a neat point-and-understand interface. Those books are now being shipped to people around the globe. I got one, and here’s the mini-review: it’s awesome. Is it a complete travel guide? No, but if you dropped me off at Hong Kong International, I could probably 1) Make it to Shenzhen 2) Buy random LEDs 3) Find a hotel 4) Get a beer 5) Not die. Pics below.

You’re hackers, and that means you’re the people who build stuff for all those ‘makers’ out there. Don’t have an MBA? No problem, [Dave Jones] has your back. He re-did his Economics of Selling Hardware video from several years ago. It’s 25 minutes long, and gives you enough information so you’re not a complete idiot at the business end of design.

Like Raspberry Pis stuffed into things? Here’s a Pi Zero stuffed into a MegaDrive cartridge. Now someone grab a Sonic and Knuckles cart, build a ROM reader, and do a proper cart-reading emulator.

If you’re into R/C, you know about Flite Test. They’re the folks that make crazy, crazy model planes out of Dollar Tree foam board, and have gotten hundreds of people into the hobby. Flite Test is having their own con, Flight Fest, in a little over a month. It’s in Ohio, and from last year’s coverage of the event, it looks like a really cool time.

So, No Man’s Sky is coming out soon. It’s a space game set in a procedurally generated, infinite galaxy. Does anyone have any idea on how to form a Hackaday clan? Somebody should start a Hackaday clan/alliance/thing. I’ll meet you guys at the core.

Thinking of You: IoT Style

Do you have loved ones who live far away? Or do you just want an interesting starter ESP8266 project to get your feet wet? If the answer to either of these questions is “yes”, we’ve got just the project for you. [Craig Lindley] built a “thinking of you” button-and-LED display device that helps people keep in touch, in a very simple way.

We like the minimalism of the design. One party presses their button, electrons flow, WiFis WiFi, data travels through a set of tubes, and an LED far away glows a pre-arranged color. The other side can signal back to say “hi” as well. It’s a cute item to have on your desk, or wherever you spend the most time. If you’re new to all of this, you can hardly beat the circuit for its simplicity.

Yeah, you could totally just send the other person a text message or an e-mail. But then you don’t get an excuse to play around with NodeMCU, and it just lacks the personal hacker touch. The code is available in a zip file here, and if you want to stay in touch with someone other than [Craig]’s sisters, you’ll probably want to customize it a bit.

Amazing Analysis of a 350,000 LED Airport Art Project

Before you zip to the comments to scream “not a hack,” watch a few minutes of this teardown video. This 48 minute detailed walkthrough of a one-off art piece shows every aspect of the project: every requirement, design decision, implementation challenge, and mistake. Some notable details:

  • PCBs that are 1 meter wide (all one piece!)
  • 350,000 white LEDs
  • Carbon fiber enclosures
  • 1-wire serial bus (like the WS2812 only not quite) with 12 bit resolution (TLC5973)
  • Customized cable test jigs, PCB test jigs, and test modes
  • An exploration on ESD issues in production

It’s not often that one sees teardowns of professional projects like this, and there’s quite a bit to learn from in here, besides it being a beautiful piece of art. See more about the Caviar House “Emergence” project at the Heathrow Airport, along with stunning pictures and video of the display in action.

If you’re thinking about how you’d control 350,000 individual LEDs with 12 bit grayscale and have it look smooth, check out the processor requirements behind the megascroller, which only handles 98,000 LEDs. More recently, we asked how many LEDs are too many, and the answer was quite a bit lower than 350k.

Continue reading “Amazing Analysis of a 350,000 LED Airport Art Project”

Color-Changing LED Makes Techno Music

As much as we like addressable LEDs for their obedience, why do we always have to control everything? At least participants of the MusicMaker Hacklab, which was part of the Artefact Festival in February this year, have learned, that sometimes we should just sit down with our electronics and listen.

With the end of the Artefact Festival approaching, they still had this leftover color-changing LED from an otherwise scavenged toy reverb microphone. When powered by a 9 V battery, the LED would start a tiny light show, flashing, fading and mixing the very best out of its three primary colors. Acoustically, however, it spent most of its time in silent dignity.

singing_led_led_anatomy

As you may know, this kind of LED contains a tiny integrated circuit. This IC pulse-width-modulates the current through the light-emitting junctions in preprogrammed patterns, thus creating the colorful light effects.

To give the LED a voice, the participants added a 1 kΩ series resistor to the LED’s “anode”, which effectively translates variations in the current passing through the LED into measurable variations of voltage. This signal could then be fed into a small speaker or a mixing console. The LED expressed its gratitude for the life-changing modification by chanting its very own disco song.

singing_led_hook_up_schematic

This particular IC seems to operate at a switching frequency of about 1.1 kHz and the resulting square wave signal noticeably dominates the mix. However, not everything we hear there may be explained solely by the PWM. There are those rhythmic “thump” noises, shifts in pitch and amplitude of the sound and more to analyze and learn from. Not wanting to spoil your fun of making sense of the beeps and cracks (feel free to spoil as much as you want in the comments!), we just say enjoy the video and thanks to the people of the STUK Belgium for sharing their findings.

A 3D-Printed Engagement Ring

[Hans Peter] had reached the moment of popping the question. Going down on one knee and proposing to his girlfriend, the full romantic works.

He’s a brave man, [Hans]. For instead of heading for the jeweller’s and laying down his savings on something with a diamond the size of a quail’s egg he decided that his ring should contain something very much of him. So he decided to 3D print a ring and embed a slowly pulsing LED in it. He does mention that this ring is a temporary solution, so perhaps his soon-to-be-Mrs will receive something sparkly and expensive in due course.

To fit his LED and flasher in such a small space he used a PIC10F320 microcontroller that comes in a SOT-23-6 package. This was chosen because it has a handy PWM output to pulse the LED rather than flash it. This he assembled dead-bug style with an 0603 LED, and a couple of hearing aid batteries to power the unit. He has some concerns about how long the hearing aid batteries will power the device, so as he wrote he had better hurry and get on his knees. (He informs us in his tip email that she said yes.)

Surprisingly we’ve covered quite a few engagement ring builds over the years. Closest to this one is an LED ring powered by an induction coil, but we’ve also featured machined titanium rings and some rather nice cast rings.